Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness

  1. Rajanikant Panda
  2. Aurore Thibaut
  3. Ane Lopez-Gonzalez
  4. Anira Escrichs
  5. Mohamed Ali Bahri
  6. Arjan Hillebrand
  7. Gustavo Deco
  8. Steven Laureys
  9. Olivia Gosseries
  10. Jitka Annen  Is a corresponding author
  11. Prejaas Tewarie  Is a corresponding author
  1. University of Liège, Belgium
  2. Universitat Pompeu Fabra, Spain
  3. Amsterdam University Medical Centers, Netherlands
  4. University of Nottingham, United Kingdom

Abstract

Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, i.e. so-called eigenmodes, were supplemented as potential markers. By analysing time-resolved functional connectivity from functional MRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and subcortical fronto-temporoparietal network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the global neuronal workspace theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness.

Data availability

Connectivity matrices will be made available open access through EBRAINS of the Human Brain Project.

The following previously published data sets were used

Article and author information

Author details

  1. Rajanikant Panda

    Coma Science Group, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0960-4340
  2. Aurore Thibaut

    Coma Science Group, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Ane Lopez-Gonzalez

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Anira Escrichs

    Coma Science Group, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6482-9737
  5. Mohamed Ali Bahri

    GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Arjan Hillebrand

    Department of Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8508-3532
  7. Gustavo Deco

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven Laureys

    Coma Science Group, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Olivia Gosseries

    Coma Science Group, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Jitka Annen

    Coma Science Group, University of Liège, Liège, Belgium
    For correspondence
    jitka.annen@uliege.be
    Competing interests
    The authors declare that no competing interests exist.
  11. Prejaas Tewarie

    School of Physics, University of Nottingham, Nottingham, United Kingdom
    For correspondence
    prejaas.tewarie@nottingham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3311-4990

Funding

Horizon 2020 Framework Programme (945539)

  • Ane Lopez-Gonzalez

Horizon 2020 Framework Programme (785907)

  • Gustavo Deco

Horizon 2020 Framework Programme (778234)

  • Olivia Gosseries

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written informed consent was obtained from all healthy subjects and the legalrepresentative for DOC patients.

Copyright

© 2022, Panda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,565
    views
  • 763
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajanikant Panda
  2. Aurore Thibaut
  3. Ane Lopez-Gonzalez
  4. Anira Escrichs
  5. Mohamed Ali Bahri
  6. Arjan Hillebrand
  7. Gustavo Deco
  8. Steven Laureys
  9. Olivia Gosseries
  10. Jitka Annen
  11. Prejaas Tewarie
(2022)
Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness
eLife 11:e77462.
https://doi.org/10.7554/eLife.77462

Share this article

https://doi.org/10.7554/eLife.77462

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.