The cellular architecture of memory modules in Drosophila supports stochastic input integration

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur  Is a corresponding author
  6. Jan Pielage  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Kaiserslautern, Germany

Abstract

The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.

Data availability

All data generated or analysed in this study are included in the manuscript.All simulation files and the code and data files needed to replicate the simulations are available as a permanent and freely accessible data collection at the Johns Hopkins University Data Archive:https://doi.org/10.7281/T1/HRK27V.This includes the simulation code itself (python), the structural EM reconstruction of MBON-alpha3 (swc), the EM reconstruction of the related MBON used to model the axon and synaptic terminal structures (swc), the synapse locations as coordinate data (json), and the synapse locations by MBON section (json). Parameter values for model definition and individual simulations are specified within the code files and outlined in each figure legend where appropriate.

Article and author information

Author details

  1. Omar A Hafez

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin Escribano

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rouven L Ziegler

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3050-7692
  4. Jan J Hirtz

    Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ernst Niebur

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    niebur@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan Pielage

    Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    pielage@bio.uni-kl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-5884

Funding

National Institutes of Health (R01DC020123)

  • Ernst Niebur

National Institutes of Health (R01DA040990)

  • Ernst Niebur

National Institutes of Health (R01EY027544)

  • Ernst Niebur

National Institutes of Health (Medical Scientist Training Program 708 Training Grant T32GM136651)

  • Ernst Niebur

National Science Foundation (1835202)

  • Ernst Niebur

Bundesministerium für Bildung und Forschung (FKZ 01GQ2105)

  • Jan Pielage

Deutsche Forschungsgemeinschaft (INST 248/293-1)

  • Jan Pielage

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Hafez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,857
    views
  • 230
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur
  6. Jan Pielage
(2023)
The cellular architecture of memory modules in Drosophila supports stochastic input integration
eLife 12:e77578.
https://doi.org/10.7554/eLife.77578

Share this article

https://doi.org/10.7554/eLife.77578

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.