Deep learning based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus

  1. Andrea Navas-Olive
  2. Rodrigo Amaducci
  3. Maria-Teresa Jurado-Parras
  4. Enrique R Sebastian
  5. Liset M de la Prida  Is a corresponding author
  1. Instituto Cajal, Spain
  2. Universidad Autónoma de Madrid, Spain

Abstract

Local field potential (LFP) deflections and oscillations define hippocampal sharp-wave ripples (SWR), one of the most synchronous events of the brain. SWR reflect firing and synaptic current sequences emerging from cognitively relevant neuronal ensembles. While spectral analysis have permitted advances, the surge of ultra-dense recordings now call for new automatic detection strategies. Here, we show how one-dimensional convolutional networks operating over high-density LFP hippocampal recordings allowed for automatic identification of SWR from the rodent hippocampus. When applied without retraining to new datasets and ultra-dense hippocampus-wide recordings, we discovered physiologically relevant processes associated to the emergence of SWR, prompting for novel classification criteria. To gain interpretability, we developed a method to interrogate the operation of the artificial network. We found it relied in feature-based specialization, which permit identification of spatially segregated oscillations and deflections, as well as synchronous population firing typical of replay. Thus, using deep learning based approaches may change the current heuristic for a better mechanistic interpretation of these relevant neurophysiological events.

Data availability

Data is deposited in the Figshare repository https://figshare.com/projects/cnn-ripple-data/117897. The trained model is accessible at the Github repository for both Python: https://github.com/PridaLab/cnn-ripple, and Matlab: https://github.com/PridaLab/cnn-matlab Code visualization and detection is shown in an interactive notebook https://colab.research.google.com/github/PridaLab/cnn-ripple/blob/main/src/notebooks/cnn-example.ipynb . The online detection Open Ephys plugin is accessible at the Github repository: https://github.com/PridaLab/CNNRippleDetectorOEPlugin

Article and author information

Author details

  1. Andrea Navas-Olive

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    Competing interests
    No competing interests declared.
  2. Rodrigo Amaducci

    Grupo de Neurocomputación Biológica, Universidad Autónoma de Madrid, Madrid, Spain
    Competing interests
    No competing interests declared.
  3. Maria-Teresa Jurado-Parras

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    Competing interests
    No competing interests declared.
  4. Enrique R Sebastian

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    Competing interests
    No competing interests declared.
  5. Liset M de la Prida

    Functional and Systems Neuroscience, Instituto Cajal, Madrid, Spain
    For correspondence
    lmprida@cajal.csic.es
    Competing interests
    Liset M de la Prida, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0160-6472

Funding

Fundacion La Caixa (LCF/PR/HR21/52410030)

  • Liset M de la Prida

Ministerio de Educacion (FPU17/03268)

  • Andrea Navas-Olive

Universidad Autónoma de Madrid (FPI-UAM-2017)

  • Rodrigo Amaducci

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols and procedures were performed according to the Spanish legislation (R.D. 1201/2005 and L.32/2007) and the European Communities Council Directive 2003 (2003/65/CE). Experiments and procedures were approved by the Ethics Committee of the Instituto Cajal and the Spanish Research Council (PROEX131-16 and PROEX161-19). All surgical procedures were performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2022, Navas-Olive et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,895
    views
  • 608
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Navas-Olive
  2. Rodrigo Amaducci
  3. Maria-Teresa Jurado-Parras
  4. Enrique R Sebastian
  5. Liset M de la Prida
(2022)
Deep learning based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus
eLife 11:e77772.
https://doi.org/10.7554/eLife.77772

Share this article

https://doi.org/10.7554/eLife.77772

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.