Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease

Abstract

Background: Neuronal and circuit level abnormalities of excitation and inhibition are shown to be associated with tau and amyloid-beta (Aβ) in preclinical models of Alzheimer's disease (AD). These relationships remain poorly understood in patients with AD.

Methods: Using empirical spectra from magnetoencephalography (MEG) and computational modeling (neural mass model; NMM) we examined excitatory and inhibitory parameters of neuronal subpopulations and investigated their specific associations to regional tau and Aβ, measured by positron emission tomography (PET), in patients with AD.

Results: Patients with AD showed abnormal excitatory and inhibitory time-constants and neural gains compared to age-matched controls. Increased excitatory time-constants distinctly correlated with higher tau depositions while increased inhibitory time-constants distinctly correlated with higher Aβ depositions.

Conclusions: Our results provide critical insights about potential mechanistic links between abnormal neural oscillations and cellular correlates of impaired excitatory and inhibitory synaptic functions associated with tau and Aβ in patients with AD.

Funding: This study was supported by the National Institutes of Health grants: K08AG058749 (KGR), F32AG050434-01A1 (KGR), K23 AG038357 (KAV), P50 AG023501, P01 AG19724 (BLM), P50-AG023501 (BLM & GDR), R01 AG045611 (GDR); AG034570, AG062542 (WJ); NS100440 (SSN), DC176960 (SSN), DC017091 (SSN), AG062196 (SSN); a grant from John Douglas French Alzheimer's Foundation (KAV); grants from Larry L. Hillblom Foundation: 2015-A-034-FEL and (KGR); 2019-A-013-SUP (KGR); a grant from the Alzheimer's Association: (PCTRB-13-288476) (KAV), and made possible by Part the CloudTM, (ETAC-09-133596); a grant from Tau Consortium (GDR & WJJ), and a gift from the S. D. Bechtel Jr. Foundation.

Data availability

Data and materials availability: All data associated with this study are present in the paper or in the Supplementary Materials. Anonymized subject data will be shared on request from qualified investigators for the purposes of replicating procedures and results, and for other non-commercial research purposes within the limits of participants' consent. Correspondence and material requests should be addressed to Kamalini.ranasinghe@ucsf.edu

Article and author information

Author details

  1. Kamalini Ranasinghe

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    For correspondence
    kamalini.ranasinghe@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4217-8785
  2. Parul Verma

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Chang Cai

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Xihe Xie

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Kiwamu Kudo

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5732-7229
  6. Xiao Gao

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Hannah Lerner

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Danielle Mizuiri

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Amelia Strom

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Leonardo Iaccarino

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Renaud La Joie

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2581-8100
  12. Bruce L Miller

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Bruce L Miller, has the following disclosures: serves as Medical Director for the John Douglas French Foundation; Scientific Director for the Tau Consortium; Director/Medical Advisory Board of the Larry L. Hillblom Foundation; and Scientific Advisory Board Member for the National Institute for Health Research Cambridge Biomedical Research Centre and its subunit, the Biomedical Research Unit in Dementia, UK..
  13. Maria Luisa Gorno-Tempini

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Katherine P Rankin

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  15. William J Jagust

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4458-113X
  16. Keith Vossel

    Department of Neurology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  17. Gil Rabinovici

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  18. Ashish Raj

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2414-2444
  19. Srikantan Nagarajan

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.

Funding

National Institute on Aging (K08AG058749)

  • Kamalini Ranasinghe

National Institute on Aging (K23 AG038357)

  • Keith Vossel

National Institutes of Health

  • Bruce L Miller
  • William J Jagust
  • Gil Rabinovici
  • Ashish Raj
  • Srikantan Nagarajan

Alzheimer's Association

  • Kamalini Ranasinghe
  • Keith Vossel

Larry L. Hillblom Foundation

  • Kamalini Ranasinghe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained from all participants and the study was approved by the Institutional Review Board (IRB) at UCSF (UCSF-IRB 10-02245).

Copyright

© 2022, Ranasinghe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,033
    views
  • 667
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kamalini Ranasinghe
  2. Parul Verma
  3. Chang Cai
  4. Xihe Xie
  5. Kiwamu Kudo
  6. Xiao Gao
  7. Hannah Lerner
  8. Danielle Mizuiri
  9. Amelia Strom
  10. Leonardo Iaccarino
  11. Renaud La Joie
  12. Bruce L Miller
  13. Maria Luisa Gorno-Tempini
  14. Katherine P Rankin
  15. William J Jagust
  16. Keith Vossel
  17. Gil Rabinovici
  18. Ashish Raj
  19. Srikantan Nagarajan
(2022)
Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease
eLife 11:e77850.
https://doi.org/10.7554/eLife.77850

Share this article

https://doi.org/10.7554/eLife.77850

Further reading

    1. Medicine
    2. Neuroscience
    Hyeonyoung Min, Yale Y Yang, Yunlei Yang
    Research Article

    It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.

    1. Medicine
    Mitsuru Sugimoto, Tadayuki Takagi ... Hiromasa Ohira
    Research Article

    Background:

    Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is a severe and deadly adverse event following ERCP. The ideal method for predicting PEP risk before ERCP has yet to be identified. We aimed to establish a simple PEP risk score model (SuPER model: Support for PEP Reduction) that can be applied before ERCP.

    Methods:

    This multicenter study enrolled 2074 patients who underwent ERCP. Among them, 1037 patients each were randomly assigned to the development and validation cohorts. In the development cohort, the risk score model for predicting PEP was established via logistic regression analysis. In the validation cohort, the performance of the model was assessed.

    Results:

    In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: –2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the pancreatic duct procedures (treated as ‘planned pancreatic duct procedures’ for calculating the score before ERCP). The PEP occurrence rate was 0% among low-risk patients (≤0 points), 5.5% among moderate-risk patients (1–3 points), and 20.2% among high-risk patients (4–7 points). In the validation cohort, the C statistic of the risk score model was 0.71 (95% CI 0.64–0.78), which was considered acceptable. The PEP risk classification (low, moderate, and high) was a significant predictive factor for PEP that was independent of intraprocedural PEP risk factors (precut sphincterotomy and inadvertent pancreatic duct cannulation) (OR 4.2, 95% CI 2.8–6.3; p<0.01).

    Conclusions:

    The PEP risk score allows an estimation of the risk of PEP prior to ERCP, regardless of whether the patient has undergone pancreatic duct procedures. This simple risk model, consisting of only five items, may aid in predicting and explaining the risk of PEP before ERCP and in preventing PEP by allowing selection of the appropriate expert endoscopist and useful PEP prophylaxes.

    Funding:

    No external funding was received for this work.