Contribution of behavioural variability to representational drift

  1. Sadra Sadeh  Is a corresponding author
  2. Claudia Clopath  Is a corresponding author
  1. Imperial College London, United Kingdom

Abstract

Neuronal responses to similar stimuli change dynamically over time, raising the question of how internal representations can provide a stable substrate for neural coding. Recent work has suggested a large degree of drift in neural representations even in sensory cortices, which are believed to store stable representations of the external world. While the drift of these representations is mostly characterized in relation to external stimuli, the behavioural state of the animal (for instance, the level of arousal) is also known to strongly modulate the neural activity. We therefore asked how the variability of such modulatory mechanisms can contribute to representational changes. We analysed large-scale recording of neural activity from the Allen Brain Observatory, which was used before to document representational drift in the mouse visual cortex. We found that, within these datasets, behavioural variability significantly contributes to representational changes. This effect was broadcasted across various cortical areas in the mouse, including the primary visual cortex, higher order visual areas, and even regions not primarily linked to vision like hippocampus. Our computational modelling suggests that these results are consistent with independent modulation of neural activity by behaviour over slower time scales. Importantly, our analysis suggests that reliable but variable modulation of neural representations by behaviour can be misinterpreted as representational drift, if neuronal representations are only characterized in the stimulus space and marginalised over behavioural parameters.

Data availability

All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials.Source Data Files have been provided for Figures 1, 2, 4 and 6 (uploaded as Excel files).Analysis code is uploaded as Source Code for Figures 1-4.

The following previously published data sets were used
    1. Allen Brain Map
    (2022) Visual Coding - Neuropixels
    https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels.

Article and author information

Author details

  1. Sadra Sadeh

    Department of Bioengineering, Imperial College London, London, United Kingdom
    For correspondence
    s.sadeh@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8159-5461
  2. Claudia Clopath

    Department of Bioengineering, Imperial College London, London, United Kingdom
    For correspondence
    c.clopath@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4507-8648

Funding

Wellcome Trust (225412/Z/22/Z)

  • Sadra Sadeh

Wellcome Trust (200790/Z/16/Z)

  • Claudia Clopath

Biotechnology and Biological Sciences Research Council (BB/N013956/1)

  • Claudia Clopath

Biotechnology and Biological Sciences Research Council (BB/N019008/1)

  • Claudia Clopath

Simons Foundation (564408)

  • Claudia Clopath

Engineering and Physical Sciences Research Council (EP/R035806/1)

  • Claudia Clopath

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sadeh & Clopath

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,167
    views
  • 669
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sadra Sadeh
  2. Claudia Clopath
(2022)
Contribution of behavioural variability to representational drift
eLife 11:e77907.
https://doi.org/10.7554/eLife.77907

Share this article

https://doi.org/10.7554/eLife.77907

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.