Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila

  1. Matthew P Bostock
  2. Anadika R Prasad
  3. Alicia Donoghue
  4. Vilaiwan M Fernandes  Is a corresponding author
  1. University College London, United Kingdom

Abstract

Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell-autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand, and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although, this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hedgehog. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.

Data availability

All data generated or analysed during this study are included in the manuscript

The following previously published data sets were used

Article and author information

Author details

  1. Matthew P Bostock

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Anadika R Prasad

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Alicia Donoghue

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Vilaiwan M Fernandes

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    vilaiwan.fernandes@ucl.ac.uk
    Competing interests
    Vilaiwan M Fernandes, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1991-7252

Funding

Wellcome Trust (210472/Z/18/Z)

  • Vilaiwan M Fernandes

University College London (Biosciences Graduate Research Scholarship)

  • Matthew P Bostock

University College London (Overseas Research Scholarship and Graduate Research Scholarship)

  • Anadika R Prasad

University College London (Research Opportunity Scholarship)

  • Alicia Donoghue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Bostock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,341
    views
  • 342
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew P Bostock
  2. Anadika R Prasad
  3. Alicia Donoghue
  4. Vilaiwan M Fernandes
(2022)
Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila
eLife 11:e78093.
https://doi.org/10.7554/eLife.78093

Share this article

https://doi.org/10.7554/eLife.78093

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.