The Natural History of Model Organisms: The rhesus macaque as a success story of the Anthropocene

  1. Eve B Cooper  Is a corresponding author
  2. Lauren JN Brent
  3. Noah Snyder-Mackler
  4. Mewa Singh
  5. Asmita Sengupta
  6. Sunil Khatiwada
  7. Suchinda Malaivijitnond
  8. Zhou Qi Hai
  9. James P Higham
  1. New York University, United States
  2. University of Exeter, United Kingdom
  3. Arizona State University, United States
  4. University of Mysore, India
  5. Ashoka Trust for Research in Ecology and the Environment, India
  6. Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Poland
  7. Chulalongkorn University, Thailand
  8. Guangxi Normal University, China

Abstract

Of all the non-human primate species studied by researchers, the rhesus macaque (Macaca mulatta) is likely the most widely used across biological disciplines. Rhesus macaques have thrived during the Anthropocene and now have the largest natural range of any non-human primate. They are highly social, exhibit marked genetic diversity, and display remarkable niche flexibility (which allows them to live in a range of habitats and survive on a variety of diets). These characteristics mean that rhesus macaques are well-suited for understanding the links between sociality, health and fitness, and also for investigating intra-specific variation, adaptation and other topics in evolutionary ecology.

Data availability

No new data was generated for this article.

Article and author information

Author details

  1. Eve B Cooper

    Department of Anthropology, New York University, New York, United States
    For correspondence
    eve.cooper@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3804-6285
  2. Lauren JN Brent

    University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1202-1939
  3. Noah Snyder-Mackler

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3026-6160
  4. Mewa Singh

    Biopsychology Laboratory, University of Mysore, Mysuru, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9198-0192
  5. Asmita Sengupta

    Ashoka Trust for Research in Ecology and the Environment, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2477-7290
  6. Sunil Khatiwada

    Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Garbatka, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1807-7375
  7. Suchinda Malaivijitnond

    Department of Biology, Chulalongkorn University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0897-2632
  8. Zhou Qi Hai

    Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2832-5005
  9. James P Higham

    Department of Anthropology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1133-2030

Funding

National Institutes of Health (R01-AG060931)

  • Eve B Cooper
  • Lauren JN Brent
  • Noah Snyder-Mackler
  • James P Higham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Cooper et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,168
    views
  • 451
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eve B Cooper
  2. Lauren JN Brent
  3. Noah Snyder-Mackler
  4. Mewa Singh
  5. Asmita Sengupta
  6. Sunil Khatiwada
  7. Suchinda Malaivijitnond
  8. Zhou Qi Hai
  9. James P Higham
(2022)
The Natural History of Model Organisms: The rhesus macaque as a success story of the Anthropocene
eLife 11:e78169.
https://doi.org/10.7554/eLife.78169
  1. Further reading

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.