A dynamic and expandable Digital 3D-Atlas MAKER for monitoring the temporal changes in tissue growth during hindbrain morphogenesis

  1. Matthias Blanc
  2. Giovanni Dalmasso
  3. Frederic Udina
  4. Cristina Pujades  Is a corresponding author
  1. Universitat Pompeu Fabra, Spain
  2. European Molecular Biology Laboratory, Spain

Abstract

Reconstruction of prototypic three-dimensional (3D) atlases at the scale of whole tissues or organs requires specific methods to be developed. We have established a digital 3D-atlas maker (DAMAKER) and built a digital 3D-atlas to monitor the changes in the growth of the neuronal differentiation domain in the zebrafish hindbrain upon time. DAMAKER integrates spatial and temporal data of cell populations, neuronal differentiation and brain morphogenesis, through in vivo imaging techniques paired with image analyses and segmentation tools. First, we generated a 3D-reference from several imaged hindbrains and segmented them using a trainable tool; these were aligned using rigid registration, revealing distribution of neuronal differentiation growth patterns along the axes. Second, we quantified the dynamic growth of the neuronal differentiation domain by in vivo neuronal birthdating experiments. We generated digital neuronal birthdating 3D-maps and revealed that the temporal order of neuronal differentiation prefigured the spatial distribution of neurons in the tissue, with an inner-outer differentiation gradient. Last, we applied it to specific differentiated neuronal populations such as glutamatergic and GABAergic neurons, as proof-of-concept that the digital birthdating 3D-maps could be used as a proxy to infer neuronal birthdate. As this protocol uses open-access tools and algorithms, it can be shared for standardized, accessible, tissue-wide cell population atlas construction.

Data availability

All data generated or analysed during this study are included in the manuscript or in the supplementary files.All code is available in https://github.com/cristinapujades/Blanc-et-al.-2022.

Article and author information

Author details

  1. Matthias Blanc

    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Giovanni Dalmasso

    European Molecular Biology Laboratory, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Frederic Udina

    Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7155-4153
  4. Cristina Pujades

    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    cristina.pujades@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6423-7451

Funding

Agencia Estatal de Investigación (PGC2018-095663-B-I00)

  • Cristina Pujades

Agencia Estatal de Investigación (PGC2018-101643-B-I00)

  • Frederic Udina

Agencia Estatal de Investigación (CEX2018-000792-M)

  • Matthias Blanc
  • Cristina Pujades

Institució Catalana de Recerca i Estudis Avançats

  • Cristina Pujades

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish (Dario rerio) were treated according to the Spanish/European regulations for the handling of animals in research. All protocols were approved by the Institutional Animal Care and Use Ethic Committee (Comitè Etica en Experimentació Animal, PRBB) and the Generalitat of Catalonia (Departament de Territori i Sostenibilitat), and they were implemented according to European regulations. The Project Licenses covering the proposed work (Ref 10642, Ref 10477, GC) pay particular attention to the 3Rs (Replacement, Reduction, Refinement).

Copyright

© 2022, Blanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 979
    views
  • 186
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthias Blanc
  2. Giovanni Dalmasso
  3. Frederic Udina
  4. Cristina Pujades
(2022)
A dynamic and expandable Digital 3D-Atlas MAKER for monitoring the temporal changes in tissue growth during hindbrain morphogenesis
eLife 11:e78300.
https://doi.org/10.7554/eLife.78300

Share this article

https://doi.org/10.7554/eLife.78300

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.