Prenatal development of neonatal vocalizations

  1. Darshana Z Narayanan
  2. Daniel Y Takahashi  Is a corresponding author
  3. Lauren M Kelly
  4. Sabina I Hlavaty
  5. Junzhou Huang
  6. Asif A Ghazanfar  Is a corresponding author
  1. Princeton University, United States
  2. The University of Texas at Arlington, United States

Abstract

Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop, remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.

Data availability

All data generated or analysed during this study are available on DRYAD.https://doi.org/10.5061/dryad.m905qfv1x

The following data sets were generated

Article and author information

Author details

  1. Darshana Z Narayanan

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Y Takahashi

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    takahashiyd@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4972-001X
  3. Lauren M Kelly

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sabina I Hlavaty

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junzhou Huang

    Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Asif A Ghazanfar

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    asifg@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1960-7470

Funding

National Institute of Neurological Disorders and Stroke (R01NS054898)

  • Asif A Ghazanfar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1908-18) of Princeton University.

Copyright

© 2022, Narayanan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,322
    views
  • 472
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Darshana Z Narayanan
  2. Daniel Y Takahashi
  3. Lauren M Kelly
  4. Sabina I Hlavaty
  5. Junzhou Huang
  6. Asif A Ghazanfar
(2022)
Prenatal development of neonatal vocalizations
eLife 11:e78485.
https://doi.org/10.7554/eLife.78485

Share this article

https://doi.org/10.7554/eLife.78485

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.