A connectomics-based taxonomy of mammals
Abstract
Mammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle for the comparison of neural architectures have been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another. Here we comprehensively chart connectome organization across the mammalian phylogenetic spectrum using a common reconstruction protocol. We analyze the mammalian MRI (MaMI) data set, a database that encompasses high-resolution ex vivo structural and diffusion magnetic resonance imaging (MRI) scans of 124 species across 12 taxonomic orders and 5 superorders, collected using a unified MRI protocol. We assess similarity between species connectomes using two methods: similarity of Laplacian eigenspectra and similarity of multiscale topological features. We find greater inter-species similarities among species within the same taxonomic order, suggesting that connectome organization reflects established taxonomic relationships defined by morphology and genetics. While all connectomes retain hallmark global features and relative proportions of connection classes, inter-species variation is driven by local regional connectivity profiles. By encoding connectomes into a common frame of reference, these findings establish a foundation for investigating how neural circuits change over phylogeny, forging a link from genes to circuits to behaviour.
Data availability
The MaMI data set was originally collected and analyzed by Assaf and colleagues in Assaf, Y. et al., 2020 , Nat. Neurosci. (doi: https://doi.org/10.1038/s41593-020-0641-7). We have included the connectivity matrices used in this study in a public repository available at \url{https://doi.org/10.5281/zenodo.7143143}.
Article and author information
Author details
Funding
Natural Sciences and Engineering Research Council of Canada
- Bratislav Misic
National Science Foundation - BSF
- Yaniv Assaf
Canadian Institutes of Health Research
- Bratislav Misic
Fondation Brain Canada (Future Leaders Fund)
- Bratislav Misic
Canada Research Chairs
- Bratislav Misic
Michael J. Fox Foundation for Parkinson's Research
- Bratislav Misic
Healthy Brains for Healthy Lives
- Bratislav Misic
Natural Sciences and Engineering Research Council of Canada
- Guillaume Lajoie
Canada Research Chairs
- Guillaume Lajoie
Canadian Institute for Advanced Research
- Guillaume Lajoie
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Suarez et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,878
- views
-
- 298
- downloads
-
- 19
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.
-
- Neuroscience
Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.