High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae

  1. Robert M Gingras  Is a corresponding author
  2. Abigail M Sulpizio
  3. Joelle Park
  4. Anthony Bretscher  Is a corresponding author
  1. Cornell University, United States

Abstract

Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 seconds prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.

Data availability

Details of each yeast strain used is in Table 1.All plasmids used are listed in Table 2.All DNA oligos used are listed in Table 3.The unique sequence used for the Myo2 marker is in Table 4.All sample sizes are provided in Table 5.All raw component data as well as mean and median is provided in Table 6.

Article and author information

Author details

  1. Robert M Gingras

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    For correspondence
    RMG284@Cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7377-0845
  2. Abigail M Sulpizio

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joelle Park

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0221-6967
  4. Anthony Bretscher

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    For correspondence
    apb5@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1122-8970

Funding

National Institute of General Medical Sciences (5RO1GM039066)

  • Anthony Bretscher

National Institute of General Medical Sciences (5R35GM131751)

  • Anthony Bretscher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gingras et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,309
    views
  • 375
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert M Gingras
  2. Abigail M Sulpizio
  3. Joelle Park
  4. Anthony Bretscher
(2022)
High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae
eLife 11:e78750.
https://doi.org/10.7554/eLife.78750

Share this article

https://doi.org/10.7554/eLife.78750

Further reading

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.

    1. Cell Biology
    Hyunggu Hahn, Carole Daly ... Alex RB Thomsen
    Research Article

    Chemokine receptors are GPCRs that regulate the chemotactic migration of a wide variety of cells including immune and cancer cells. Most chemokine receptors contain features associated with the ability to stimulate G protein signaling during β-arrestin-mediated receptor internalization into endosomes. As endosomal signaling of certain non-GPCR receptors plays a major role in cell migration, we chose to investigate the potential role of endosomal chemokine receptor signaling on mechanisms governing this function. Applying a combination of pharmacological and cell biological approaches, we demonstrate that the model chemokine receptor CCR7 recruits G protein and β-arrestin simultaneously upon chemokine stimulation, which enables internalized receptors to activate G protein from endosomes. Furthermore, spatiotemporal-resolved APEX2 proteome profiling shows that endosomal CCR7 uniquely enriches specific Rho GTPase regulators as compared to plasma membrane CCR7, which is directly associated with enhanced activity of the Rho GTPase Rac1 and chemotaxis of immune T cells. As Rac1 drives the formation of membrane protrusions during chemotaxis, our findings suggest an important integrated function of endosomal chemokine receptor signaling in cell migration.