Protein evidence of unannotated ORFs in Drosophila reveals diversity in the evolution and properties of young proteins
Abstract
De novo gene origination, where a previously non-genic genomic sequence becomes genic through evolution, has been increasingly recognized as an important source of evolutionary novelty across diverse taxa. Many de novo genes have been proposed to be protein-coding, and in several cases have been experimentally shown to yield protein products. However, the systematic study of de novo proteins has been hampered by doubts regarding the translation of their transcripts without the experimental observation of protein products. Using a systematic, ORF-focused mass-spectrometry-first computational approach, we identify almost 1000 unannotated open reading frames with evidence of translation (utORFs) in the model organism Drosophila melanogaster, 371 of which have canonical start codons. To quantify the comparative genomic similarity of these utORFs across Drosophila and to infer phylostratigraphic age, we further develop a synteny-based protein similarity approach. Combining these results with reference datasets on tissue- and life-stage-specific transcription and conservation, we identify different properties amongst these utORFs. Contrary to expectations, the fastest-evolving utORFs are not the youngest evolutionarily. We observed more utORFs in the brain than in the testis. Most of the identified utORFs may be of de novo origin, even accounting for the possibility of false-negative similarity detection. Finally, sequence divergence after an inferred de novo origin event remains substantial, raising the possibility that de novo proteins turn over frequently. Our results suggest that there is substantial unappreciated diversity in de novo protein evolution: many more may exist than have been previously appreciated; there may be divergent evolutionary trajectories; and de novo proteins may be gained and lost frequently. All in all, there may not exist a single characteristic model of de novo protein evolution, but instead, there may be diverse evolutionary trajectories for de novo proteins.
Data availability
Raw MS data are deposited in PRIDE under accession number PXD032197. Relevant scripts and intermediate files can be found in our Github repository https://github.com/LiZhaoLab/utORF_mass_spec.
Article and author information
Author details
Funding
National Institute of General Medical Sciences (R35GM133780)
- Li Zhao
National Institute of General Medical Sciences (T32GM007739)
- Eric B Zheng
Robertson Foundation
- Li Zhao
Rita Allen Foundation (Rita Allen Foundation Scholar)
- Li Zhao
Vallee Foundation (Vallee Scholar)
- Li Zhao
Monique Weill-Caulier Trust
- Li Zhao
Alfred P. Sloan Foundation (Alfred P. Sloan Research Fellowship)
- Li Zhao
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Zheng & Zhao
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,777
- views
-
- 363
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
-
- Evolutionary Biology
A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.