An increase of inhibition drives the developmental decorrelation of neural activity

  1. Mattia Chini  Is a corresponding author
  2. Thomas Pfeffer
  3. Ileana Hanganu-Opatz
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. Universitat Pompeu Fabra, Spain

Abstract

Throughout development, the brain transits from early highly synchronous activity patterns to a mature state with sparse and decorrelated neural activity, yet the mechanisms underlying this process are poorly understood. The developmental transition has important functional consequences, as the latter state is thought to allow for more efficient storage, retrieval and processing of information. Here, we show that, in the mouse medial prefrontal cortex (mPFC), neural activity during the first two postnatal weeks decorrelates following specific spatial patterns. This process is accompanied by a concomitant tilting of excitation-inhibition (E-I) ratio towards inhibition. Using optogenetic manipulations and neural network modeling, we show that the two phenomena are mechanistically linked, and that a relative increase of inhibition drives the decorrelation of neural activity. Accordingly, in mice mimicking the etiology of neurodevelopmental disorders, subtle alterations in E-I ratio are associated with specific impairments in the correlational structure of spike trains. Finally, capitalizing on EEG data from newborn babies, we show that an analogous developmental transition takes place also in the human brain. Thus, changes in E-I ratio control the (de)correlation of neural activity and, by these means, its developmental imbalance might contribute to the pathogenesis of neurodevelopmental disorders.

Data availability

LFP and SUA data that were newly generated for this study are available at the following open-access repository: https://gin.g-node.org/mchini/development_EI_decorrelation.Code supporting the findings of this study is available at the following open-access repository: https://github.com/mchini/Chini_et_al_EI_decorrelation.

Article and author information

Author details

  1. Mattia Chini

    Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    mattia.chini@zmnh.uni-hamburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5782-9720
  2. Thomas Pfeffer

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9561-3085
  3. Ileana Hanganu-Opatz

    Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (ERC-2015-CoG 681577)

  • Ileana Hanganu-Opatz

Marie Curie Training Network euSNN (MSCA-ITN-H2020-860563)

  • Ileana Hanganu-Opatz

Horizon 2020 Framework Programme (DEEPER 101016787)

  • Ileana Hanganu-Opatz

Deutsche Forschungsgemeinschaft (437610067,178316478 and 302153259)

  • Ileana Hanganu-Opatz

Landesforschungsfoerderung Hamburg (LFF76,LFF73)

  • Ileana Hanganu-Opatz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in compliance with the German laws and following the European Community guidelines regarding the research animals use. All experiments were approved by the local ethical committee (G132/12, G17/015, N18/015).

Human subjects: No new human data was collected for this study, only open-access datasets were used.

Copyright

© 2022, Chini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,921
    views
  • 744
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mattia Chini
  2. Thomas Pfeffer
  3. Ileana Hanganu-Opatz
(2022)
An increase of inhibition drives the developmental decorrelation of neural activity
eLife 11:e78811.
https://doi.org/10.7554/eLife.78811

Share this article

https://doi.org/10.7554/eLife.78811

Further reading

    1. Neuroscience
    Tai-Ying Lee, Yves Weissenberger ... Johannes C Dahmen
    Research Article

    Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals’ behavior can be decoded from the activity of those neurons with a high degree of accuracy. Surprisingly, this was also the case in mice in which auditory cortical input to the midbrain had been removed by bilateral cortical lesions. This illustrates that subcortical auditory structures have access to a wealth of non-acoustic information and can, independently of the auditory cortex, carry much richer neural representations than previously thought.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.