Meta-Research: How parenthood contributes to gender gaps in academia

  1. Xiang Zheng
  2. Haimiao Yuan
  3. Chaoqun Ni  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. University of Iowa, United States

Abstract

Being a parent has long been associated with gender disparities in academia. However, details of the mechanisms by which parenthood and gender influence academic career achievement and progression are not fully understood. Here, using data from a survey of 7,764 academics in North America and publication data from the Web of Science, we analyze gender differences in parenthood and academic achievements and explore the influence of work-family conflict and partner support on these gender gaps. Our results suggest that gender gaps in academic achievement are, in fact, 'parenthood gender gaps'. Specifically, we found significant gender gaps in all measures of academic achievement (both objective and subjective) in the parent group but not in the non-parent group. Mothers are more likely than fathers to experience higher levels of work-family conflict and to receive lower levels of partner support, contributing significantly to the gender gaps in academic achievement for the parent group. We also discuss possible interventions and actions for reducing gender gaps in academia.

Data availability

All data needed to evaluate the conclusions in the paper are present here and in the Supplementary Materials. Aggregated or de-identified data on variables used in this study is available on GitHub (https://github.com/UWMadisonMetaScience/parenting).

Article and author information

Author details

  1. Xiang Zheng

    University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6619-5504
  2. Haimiao Yuan

    University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chaoqun Ni

    University of Wisconsin-Madison, Madison, United States
    For correspondence
    chaoqun.ni@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-7602

Funding

Wisconsin Alumni Research Foundation

  • Xiang Zheng
  • Chaoqun Ni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The survey of this study was approved by the IRB board at the University of Iowa (IRB ID#201901776)IRB-02DHHS Registration # IRB00000100,Univ of Iowa,DHHS Federalwide Assurance # FWA00003007Below is the consent information from the approved IRB:You are invited to participate in a research project being conducted at the University of Iowa regarding the career development of researchers. The primary purpose of this study is to investigate the relationship between marriage, parenthood, gender, and the career trajectories of researchers. We aim to understand whether, and to what degree, these factors are related to the professional development of researchers. This project will provide implications for future scientists about their work-life management and career development, as well as related stakeholders, for the purpose of creating a better environment that will facilitate the development of researchers' careers.If you agree to participate, we would like you to complete an online survey (found below). You are free to stop taking this survey if you prefer not to answer any question. It will take approximately 15 to 20 minutes. Confidentiality research data will be kept anonymous and secure (encrypted and stored in a locked file) for up to 10 years and will then be deleted.Taking part in this research study is entirely voluntary. If you do not wish to participate in this study, you are free to decline. You may also withdraw from this project at any time, without consequences or recrimination. You will NOT be asked for an explanation for your withdrawal. Should you choose to withdraw after finishing the survey, please advise the project manager or any member of the research team. In the case of early withdrawal from the study, data will be destroyed immediately.If you have any questions about this project, please contact Haimiao Yuan (haimiao-yuan@uiowa.edu) at the University of Iowa. If you have questions about the rights of research subjects, please contact the Human Subjects Office, 105 Hardin Library for the Health Sciences, 600 Newton Rd, The University of Iowa, Iowa City, IA 52242-1098, (319) 335-6564, or e-mail irb@uiowa.edu. Thank you very much for your consideration.

Copyright

© 2022, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,164
    views
  • 378
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiang Zheng
  2. Haimiao Yuan
  3. Chaoqun Ni
(2022)
Meta-Research: How parenthood contributes to gender gaps in academia
eLife 11:e78909.
https://doi.org/10.7554/eLife.78909
  1. Further reading

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.