Abstract

In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The SMC ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.

Data availability

All data generated or analyzed during this experimental study are included in the manuscript as source data.

Article and author information

Author details

  1. Makoto M Yoshida

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0618-1717
  2. Kazuhisa Kinoshita

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0882-4296
  3. Yuuki Aizawa

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5002-7557
  4. Shoji Tane

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0209-347X
  5. Daisuke Yamashita

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    Daisuke Yamashita, is currently affiliated with Otsuka Pharmaceutical Co., Ltd. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6054-5617
  6. Keishi Shintomi

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0484-9901
  7. Tatsuya Hirano

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    For correspondence
    hiranot@riken.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4219-6473

Funding

Japan Society for the Promotion of Science (#20K15723)

  • Makoto M Yoshida

Japan Society for the Promotion of Science (#15K06959)

  • Kazuhisa Kinoshita

Japan Society for the Promotion of Science (#19K06499)

  • Kazuhisa Kinoshita

Japan Society for the Promotion of Science (#18H02381)

  • Keishi Shintomi

Japan Society for the Promotion of Science (#19H05755)

  • Keishi Shintomi

Japan Society for the Promotion of Science (#18H05276)

  • Tatsuya Hirano

Japan Society for the Promotion of Science (#20H0593)

  • Tatsuya Hirano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Female Xenopus laevis frogs (RRID: NXR 0.031, Hamamatsu Seibutsu-Kyozai) were used to lay eggs to harvest Xenopus egg extract (Hirano et al., 1997). Male X. laevis frogs (RRID: NXR 0.031, Hamamatsu Seibutsu-Kyozai) were dissected to prepare sperm nuclei from testes (Shintomi and Hirano, 2017). Frogs were used in compliance with the institutional regulations of the RIKEN Wako Campus. Mice (BALB/c × C57BL/6J)F1) for sperm nuclei (Shintomi et al., 2017) were used in compliance with protocols approved by the Animal Care and Use Committee of the University of Tokyo (for M. Ohsugi who provided mouse sperm).

Copyright

© 2022, Yoshida et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Makoto M Yoshida
  2. Kazuhisa Kinoshita
  3. Yuuki Aizawa
  4. Shoji Tane
  5. Daisuke Yamashita
  6. Keishi Shintomi
  7. Tatsuya Hirano
(2022)
Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays
eLife 11:e78984.
https://doi.org/10.7554/eLife.78984

Share this article

https://doi.org/10.7554/eLife.78984

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.