Selective endocytosis controls slit diaphragm maintenance and dynamics in Drosophila nephrocytes

Abstract

The kidneys generate about 180 liters of primary urine per day by filtration of plasma. An essential part of the filtration barrier is the slit diaphragm, a multiprotein complex containing nephrin as major component. Filter dysfunction typically manifests with proteinuria and mutations in endocytosis regulating genes were discovered as causes of proteinuria. However, it is unclear how endocytosis regulates the slit diaphragm and how the filtration barrier is maintained without either protein leakage or filter clogging. Here we study nephrin dynamics in podocyte-like nephrocytes of Drosophila and show that selective endocytosis either by dynamin- or flotillin-mediated pathways regulates a stable yet highly dynamic architecture. Short-term manipulation of endocytic functions indicates that dynamin-mediated endocytosis of ectopic nephrin restricts slit diaphragm formation spatially while flotillin-mediated turnover of nephrin within the slit diaphragm is needed to maintain filter permeability by shedding of molecules bound to nephrin in endosomes. Since slit diaphragms cannot be studied in vitro and are poorly accessible in mouse models, this is the first analysis of their dynamics within the slit diaphragm multiprotein complex. Identification of the mechanisms of slit diaphragm maintenance will help to develop novel therapies for proteinuric renal diseases that are frequently limited to symptomatic treatment.

Data availability

Transgenic Drosophila lines are available from the corresponding author upon reasonable request. Unprocessed image files were submitted to a public repository (zenodo.org, DOI: 10.5281/zenodo.6418762). Access is not restricted for scientific purposes.

The following data sets were generated

Article and author information

Author details

  1. Konrad Lang

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Julian Milosavljevic

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Helena Heinkele

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Mengmeng Chen

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lea Gerstner

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Dominik Spitz

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Severine Kayser

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Helmstädter

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Gerd Walz

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Köttgen

    Department of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2406-5039
  11. Andrew Spracklen

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5550-8595
  12. John Poulton

    Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tobias Hermle

    Department of Medicine, University of Freiburg, Freiburg, Germany
    For correspondence
    tobias.hermle@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0441-7749

Funding

Deutsche Forschungsgemeinschaft (project-ID 431984000)

  • Tobias Hermle

Deutsche Forschungsgemeinschaft (HE 7456/3-1)

  • Tobias Hermle

Deutsche Forschungsgemeinschaft (HE 7456/4-1)

  • Tobias Hermle

Deutsche Gesellschaft für Innere Medizin (Clinician Scientist Fellowship)

  • Tobias Hermle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,613
    views
  • 327
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konrad Lang
  2. Julian Milosavljevic
  3. Helena Heinkele
  4. Mengmeng Chen
  5. Lea Gerstner
  6. Dominik Spitz
  7. Severine Kayser
  8. Martin Helmstädter
  9. Gerd Walz
  10. Michael Köttgen
  11. Andrew Spracklen
  12. John Poulton
  13. Tobias Hermle
(2022)
Selective endocytosis controls slit diaphragm maintenance and dynamics in Drosophila nephrocytes
eLife 11:e79037.
https://doi.org/10.7554/eLife.79037

Share this article

https://doi.org/10.7554/eLife.79037

Further reading

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.

    1. Cell Biology
    Hyunggu Hahn, Carole Daly ... Alex RB Thomsen
    Research Article

    Chemokine receptors are GPCRs that regulate the chemotactic migration of a wide variety of cells including immune and cancer cells. Most chemokine receptors contain features associated with the ability to stimulate G protein signaling during β-arrestin-mediated receptor internalization into endosomes. As endosomal signaling of certain non-GPCR receptors plays a major role in cell migration, we chose to investigate the potential role of endosomal chemokine receptor signaling on mechanisms governing this function. Applying a combination of pharmacological and cell biological approaches, we demonstrate that the model chemokine receptor CCR7 recruits G protein and β-arrestin simultaneously upon chemokine stimulation, which enables internalized receptors to activate G protein from endosomes. Furthermore, spatiotemporal-resolved APEX2 proteome profiling shows that endosomal CCR7 uniquely enriches specific Rho GTPase regulators as compared to plasma membrane CCR7, which is directly associated with enhanced activity of the Rho GTPase Rac1 and chemotaxis of immune T cells. As Rac1 drives the formation of membrane protrusions during chemotaxis, our findings suggest an important integrated function of endosomal chemokine receptor signaling in cell migration.