Endo-lysosomal assembly variations among Human Leukocyte Antigen class I (HLA-I) allotypes

  1. Eli Olson
  2. Theadora Ceccarelli
  3. Malini Raghavan  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States

Abstract

The extreme polymorphisms of HLA-I proteins enable the presentation of diverse peptides to cytotoxic T lymphocytes (CTL). The canonical endoplasmic reticulum (ER) HLA-I assembly pathway enables presentation of cytosolic peptides, but effective intracellular surveillance requires multi-compartmental antigen sampling. Endo-lysosomes are generally sites of HLA class II assembly, but human monocytes and monocyte-derived dendritic cells (moDCs) also contain significant reserves of endo-lysosomal HLA-I molecules. We hypothesized variable influences of HLA-I polymorphisms upon outcomes of endo-lysosomal trafficking, as the stabilities and peptide occupancies of cell surface HLA-I are variable. Consistent with this model, when the endo-lysosomal pH of moDCs is disrupted, HLA-B allotypes display varying propensities for reductions in surface expression, with HLA-B*08:01 or HLA-B*35:01 being among the most resistant or sensitive respectively, among eight tested HLA-B allotypes. Perturbations of moDC endo-lysosomal pH result in redistribution of HLA-B*35:01, but not HLA-B*08:01, to LAMP1+ compartments and increase HLA-B*35:01 peptide receptivity. These findings reveal the intersection of the vacuolar cross-presentation pathway with a constitutive assembly pathway for some HLA-B allotypes. Notably, cross-presentation of epitopes derived from two soluble antigens was also more efficient for B*35:01 compared to B*08:01, even when matched for T cell response sensitivity, and more affected by cathepsin inhibition. Thus, HLA-I polymorphisms dictate the degree of endo-lysosomal assembly, which can supplement ER assembly for constitutive HLA-I expression and increase the efficiency of cross-presentation.

Data availability

The original data have been deposited to Dryad. Source data for figures have also been provided.

The following data sets were generated
The following previously published data sets were used
    1. Sarkizova et al
    (2020) HLA-I peptidomes
    public proteomics repository MassIVE; MSV000084172/.
    1. Sarkizova et al
    (2020) HLA-I peptidomes
    public proteomics repository MassIVE; MSV000080527.

Article and author information

Author details

  1. Eli Olson

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2319-7144
  2. Theadora Ceccarelli

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Malini Raghavan

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    malinir@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1345-9318

Funding

National Institute of Allergy and Infectious Diseases (RO1AI044115)

  • Malini Raghavan

National Institute of Allergy and Infectious Diseases (R21AI64025)

  • Malini Raghavan

National Institute of General Medical Sciences (T32GM008353)

  • Eli Olson

National Institute of Allergy and Infectious Diseases (T32AI007413)

  • Eli Olson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent from healthy donors for blood collections and HLA genotyping was procured in accordance with a University of Michigan IRB approved protocol (HUM00071750). The consent document included information that results of the studies could be published in an article without identifying information about blood donors. Donors were genotyped at the HLA locus as previously described (Yarzabek et al., 2018). Alternatively, non-genotyped donor blood was obtained from the University of Michigan Platelet Pharmacology and Physiology core in accordance with a University of Michigan IRB approved protocol (HUM00107120).

Copyright

© 2023, Olson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 902
    views
  • 119
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eli Olson
  2. Theadora Ceccarelli
  3. Malini Raghavan
(2023)
Endo-lysosomal assembly variations among Human Leukocyte Antigen class I (HLA-I) allotypes
eLife 12:e79144.
https://doi.org/10.7554/eLife.79144

Share this article

https://doi.org/10.7554/eLife.79144

Further reading

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.