Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality

  1. Brian Kim
  2. Seth Haney
  3. Ana P Milan
  4. Shruti Joshi
  5. Zane Aldworth
  6. Nikolai Rulkov
  7. Alexander T Kim
  8. Maxim Bazhenov  Is a corresponding author
  9. Mark A Stopfer  Is a corresponding author
  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  2. University of California, San Diego, United States
  3. Amsterdam University Medical Centers, Netherlands

Abstract

Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching. Further, each motif undergoes its own form of sensory adaptation when activated by repeated plume-like odor pulses. A computational model constrained by our recordings revealed that organizing responses into multiple motifs provides substantial benefits for classifying odors and processing complex odor plumes: each motif contributes uniquely to encode the plume's composition and structure. Multiple motifs and motif switching further improve odor classification by expanding coding dimensionality. Our model demonstrated these response features could provide benefits for olfactory navigation, including determining the distance to an odor source.

Data availability

All data generated or analyzed during this study have been deposited at Open Science Framework and can be accessed here: https://osf.io/8bs72/

Article and author information

Author details

  1. Brian Kim

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seth Haney

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana P Milan

    Department of Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Shruti Joshi

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zane Aldworth

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0647-8465
  6. Nikolai Rulkov

    Biocircuits Institute, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander T Kim

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maxim Bazhenov

    Biocircuits Institute, University of California, San Diego, La Jolla, United States
    For correspondence
    mbazhenov@health.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1936-0570
  9. Mark A Stopfer

    Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    For correspondence
    stopferm@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9200-1884

Funding

Office of Naval Research (N00014-16-1-2829)

  • Maxim Bazhenov

National Institutes of Health (RF1MH117155)

  • Maxim Bazhenov

National Institutes of Health (R01NS109553)

  • Maxim Bazhenov

National Science Foundation (IIS-1724405)

  • Maxim Bazhenov

Obra Social La Caixa (ID 100010434 with code LCF/BQ/ES15/10360004)

  • Ana P Milan

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Intramural)

  • Mark A Stopfer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,759
    views
  • 276
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Kim
  2. Seth Haney
  3. Ana P Milan
  4. Shruti Joshi
  5. Zane Aldworth
  6. Nikolai Rulkov
  7. Alexander T Kim
  8. Maxim Bazhenov
  9. Mark A Stopfer
(2023)
Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality
eLife 12:e79152.
https://doi.org/10.7554/eLife.79152

Share this article

https://doi.org/10.7554/eLife.79152

Further reading

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.