Neuroscout, a unified platform for generalizable and reproducible fMRI research

  1. Alejandro de la Vega  Is a corresponding author
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
  1. The University of Texas at Austin, United States
  2. Aarhus University, Denmark
  3. Stanford University, United States
  4. Massachusetts Institute of Technology, United States
  5. McGill University, Canada

Abstract

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.

Data availability

All code from our processing pipeline and core infrastructure is available online (https://www.github.com/neuroscout/neuroscout). An online supplement including all analysis code and resulting images is available as a public GitHub repository (https://github.com/neuroscout/neuroscout-paper).All analysis results are made publicly available in a public GitHub repository

The following previously published data sets were used
    1. Hanke M
    2. et al
    (2014) studyforrest
    OpenNeuro, doi:10.18112/ openneuro.ds000113 .v1.3.0.
    1. Nastase SA
    2. et al
    (2021) Narratives
    OpenNeuro, doi:10.18112/openneuro.ds002345 .v1.1.4.

Article and author information

Author details

  1. Alejandro de la Vega

    Department of Psychology, The University of Texas at Austin, Austin, United States
    For correspondence
    delavega@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9062-3778
  2. Roberta Rocca

    Interacting Minds Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ross W Blair

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J Markiewicz

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6533-164X
  5. Jeff Mentch

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James D Kent

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peer Herholz

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9840-6257
  8. Satrajit S Ghosh

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5312-6729
  9. Russell A Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tal Yarkoni

    Department of Psychology, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (R01MH109682)

  • Alejandro de la Vega
  • Roberta Rocca
  • Ross W Blair
  • Christopher J Markiewicz
  • Jeff Mentch
  • James D Kent
  • Peer Herholz
  • Satrajit S Ghosh
  • Russell A Poldrack
  • Tal Yarkoni

National Institute of Mental Health (R01MH096906)

  • Alejandro de la Vega
  • James D Kent
  • Tal Yarkoni

National Institute of Mental Health (R24MH117179)

  • Peer Herholz
  • Satrajit S Ghosh

National Institute of Mental Health (R24MH117179)

  • Ross W Blair
  • Christopher J Markiewicz
  • Russell A Poldrack

Canada First Research Excellence Fund

  • Peer Herholz

Brain Canada Fondation

  • Peer Herholz

Unifying Neuroscience and Artificial Intelligence - Québec

  • Peer Herholz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, de la Vega et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,326
    views
  • 233
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro de la Vega
  2. Roberta Rocca
  3. Ross W Blair
  4. Christopher J Markiewicz
  5. Jeff Mentch
  6. James D Kent
  7. Peer Herholz
  8. Satrajit S Ghosh
  9. Russell A Poldrack
  10. Tal Yarkoni
(2022)
Neuroscout, a unified platform for generalizable and reproducible fMRI research
eLife 11:e79277.
https://doi.org/10.7554/eLife.79277

Share this article

https://doi.org/10.7554/eLife.79277

Further reading

    1. Neuroscience
    Tai-Ying Lee, Yves Weissenberger ... Johannes C Dahmen
    Research Article

    Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals’ behavior can be decoded from the activity of those neurons with a high degree of accuracy. Surprisingly, this was also the case in mice in which auditory cortical input to the midbrain had been removed by bilateral cortical lesions. This illustrates that subcortical auditory structures have access to a wealth of non-acoustic information and can, independently of the auditory cortex, carry much richer neural representations than previously thought.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.