Regulatory T cells suppress the formation of potent KLRK1 and IL-7R expressing effector CD8 T cells by limiting IL-2

  1. Oksana Tsyklauri
  2. Tereza Chadimova
  3. Veronika Niederlova
  4. Jirina Kovarova
  5. Juraj Michalik
  6. Iva Malatova
  7. Sarka Janusova
  8. Olha Ivashchenko
  9. Helene Rossez
  10. Ales Drobek
  11. Hana Vecerova
  12. Virginie Galati
  13. Marek Kovar
  14. Ondrej Stepanek  Is a corresponding author
  1. Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Republic
  2. Institute of Microbiology of the Czech Academy of Sciences, Czech Republic
  3. University Hospital of Basel, Switzerland

Abstract

Regulatory T cells (Tregs) are indispensable for maintaining self-tolerance by suppressing conventional T cells. On the other hand, Tregs promote tumor growth by inhibiting anti-cancer immunity. In this study, we identified that Tregs increase the quorum of self-reactive CD8+ T cells required for the induction of experimental autoimmune diabetes in mice. Their major suppression mechanism is limiting available IL-2, an essential T-cell cytokine. Specifically, Tregs inhibit the formation of a previously uncharacterized subset of antigen-stimulated KLRK1+ IL7R+ (KILR) CD8+ effector T cells, which are distinct from conventional effector CD8+ T cells. KILR CD8+ T cells show a superior cell killing abilities in vivo. The administration of agonistic IL-2 immunocomplexes phenocopies the absence of Tregs, i.e., it induces KILR CD8+ T cells, promotes autoimmunity, and enhances anti-tumor responses in mice. Counterparts of KILR CD8+ T cells were found in the human blood, revealing them as a potential target for immunotherapy.

Data availability

All scRNA data analyzed in this study as well as the scripts used for the analysis are available without restrictions. The scRNAseq data generated in this study were deposited in the Gene Expression Omnibus (GSE183940).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Oksana Tsyklauri

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9997-5913
  2. Tereza Chadimova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Niederlova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Jirina Kovarova

    Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Juraj Michalik

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Iva Malatova

    Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarka Janusova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0111-497X
  8. Olha Ivashchenko

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Helene Rossez

    Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Ales Drobek

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  11. Hana Vecerova

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  12. Virginie Galati

    Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Marek Kovar

    Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6602-1678
  14. Ondrej Stepanek

    Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
    For correspondence
    ondrej.stepanek@img.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2735-3311

Funding

European Research Council (FunDiT)

  • Ondrej Stepanek

European Union - Next Generation EU (LX22NPO5103)

  • Ondrej Stepanek

European Union - Next Generation EU (LX22NPO5102)

  • Marek Kovar

Czech Science Foundation (19-03435Y)

  • Ondrej Stepanek

Czech Science Foundation (22-20548S)

  • Marek Kovar

Research Fund for Young Scientists at the University of Basel (DMS2336)

  • Ondrej Stepanek

Charles University Grant Agency (1706119)

  • Oksana Tsyklauri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal protocols were performed in accordance with the laws of the Czech Republic and Cantonal and Federal laws of Switzerland, and approved by the Czech Academy of Sciences (identification no. 11/2016, 81/2018, 15/2019) or the Cantonal Veterinary Office of Baselstadt, Switzerland, respectively.

Copyright

© 2023, Tsyklauri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,589
    views
  • 272
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oksana Tsyklauri
  2. Tereza Chadimova
  3. Veronika Niederlova
  4. Jirina Kovarova
  5. Juraj Michalik
  6. Iva Malatova
  7. Sarka Janusova
  8. Olha Ivashchenko
  9. Helene Rossez
  10. Ales Drobek
  11. Hana Vecerova
  12. Virginie Galati
  13. Marek Kovar
  14. Ondrej Stepanek
(2023)
Regulatory T cells suppress the formation of potent KLRK1 and IL-7R expressing effector CD8 T cells by limiting IL-2
eLife 12:e79342.
https://doi.org/10.7554/eLife.79342

Share this article

https://doi.org/10.7554/eLife.79342

Further reading

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.