Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nano-architecture in flight muscles

  1. Florian Schueder
  2. Pierre Mangeol
  3. Eunice HoYee Chan
  4. Renate Rees
  5. Jürgen Schünemann
  6. Ralf Jungmann  Is a corresponding author
  7. Dirk Görlich  Is a corresponding author
  8. Frank Schnorrer  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. Aix Marseille University, CNRS, IDBM, France
  3. Max Planck Institute for Multidisciplinary Sciences, Germany
  4. Ludwig Maximilian University, Germany

Abstract

Sarcomeres are the force producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the Drosophila titin nanobody toolbox, recognising specific domains of the two Drosophila titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two Drosophila titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.

Data availability

All source data for all figures are provided.Figure 3 - Source Data 1Figure 4 - Source Data 1Figure 5 - Source Data 1Figure 6 - Source Data 1All new code has been uploaded to a public database and the link is provided.

The following data sets were generated
    1. Pierre Mangeol
    (2022) titin_PAINT
    Github, PierreMangeol/titin_PAINT.

Article and author information

Author details

  1. Florian Schueder

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Pierre Mangeol

    Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8305-7322
  3. Eunice HoYee Chan

    Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3162-3609
  4. Renate Rees

    Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jürgen Schünemann

    Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ralf Jungmann

    Ludwig Maximilian University, Munich, Germany
    For correspondence
    jungmann@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4607-3312
  7. Dirk Görlich

    Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
    For correspondence
    goerlich@mpinat.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Frank Schnorrer

    Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
    For correspondence
    frank.schnorrer@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9518-7263

Funding

Centre National de la Recherche Scientifique

  • Frank Schnorrer

Human Frontier Science Program (RGP0052/2018)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-10-INBS-04-01)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-16-CONV-0001,Turing Centre for Living Systems)

  • Frank Schnorrer

Aix-Marseille Université

  • Pierre Mangeol

Max-Planck-Gesellschaft

  • Dirk Görlich

Max-Planck-Gesellschaft

  • Ralf Jungmann

European Research Council (ERC-2019-SyG 856118)

  • Dirk Görlich

European Research Council (ERC-2019-SyG 856118)

  • Frank Schnorrer

European Research Council (ERC-2015-StG 680241)

  • Ralf Jungmann

Aix-Marseille Université (ANR-11-IDEX-0001-02)

  • Frank Schnorrer

Agence Nationale de la Recherche (ACHN MUSCLE-FORCES)

  • Frank Schnorrer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Schueder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,723
    views
  • 360
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Schueder
  2. Pierre Mangeol
  3. Eunice HoYee Chan
  4. Renate Rees
  5. Jürgen Schünemann
  6. Ralf Jungmann
  7. Dirk Görlich
  8. Frank Schnorrer
(2023)
Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nano-architecture in flight muscles
eLife 12:e79344.
https://doi.org/10.7554/eLife.79344

Share this article

https://doi.org/10.7554/eLife.79344

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.