Evolutionary rescue of phosphomannomutase deficiency in yeast models of human disease

  1. Ryan C Vignogna
  2. Mariateresa Allocca
  3. Maria Monticelli
  4. Joy W Norris
  5. Richard Steet
  6. Ethan O Perlstein
  7. Giuseppina Andreotti  Is a corresponding author
  8. Gregory I Lang  Is a corresponding author
  1. Lehigh University, United States
  2. National Research Council, Italy
  3. Greenwood Genetic Center, United States
  4. Perlara PBC, United States

Abstract

The most common cause of human congenital disorders of glycosylation (CDG) are mutations in the phosphomannomutase gene PMM2, which affect protein N-linked glycosylation. The yeast gene SEC53 encodes a homolog of human PMM2. We evolved 384 populations of yeast harboring one of two human-disease-associated alleles, sec53-V238M and sec53-F126L, or wild-type SEC53. We find that after 1,000 generations, most populations compensate for the slow-growth phenotype associated with the sec53 human-disease-associated alleles. Through whole-genome sequencing we identify compensatory mutations, including known SEC53 genetic interactors. We observe an enrichment of compensatory mutations in other genes whose human homologs are associated with Type 1 CDG, including PGM1, which encodes the minor isoform of phosphoglucomutase in yeast. By genetic reconstruction, we show that evolved pgm1 mutations are dominant and allele-specific genetic interactors that restore both protein glycosylation and growth of yeast harboring the sec53-V238M allele. Finally, we characterize the enzymatic activity of purified Pgm1 mutant proteins. We find that reduction, but not elimination, of Pgm1 activity best compensates for the deleterious phenotypes associated with the sec53-V238M allele. Broadly, our results demonstrate the power of experimental evolution as a tool for identifying genes and pathways that compensate for human-disease associated alleles.

Data availability

The short-read sequencing data reported in this study have been deposited to the NCBI BioProject database, accession number PRJNA784975.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ryan C Vignogna

    Department of Biological Sciences, Lehigh University, Bethlehem, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5943-6464
  2. Mariateresa Allocca

    Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3693-2515
  3. Maria Monticelli

    Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
    Competing interests
    No competing interests declared.
  4. Joy W Norris

    Research Division, Greenwood Genetic Center, Greenwood, United States
    Competing interests
    No competing interests declared.
  5. Richard Steet

    Research Division, Greenwood Genetic Center, Greenwood, United States
    Competing interests
    No competing interests declared.
  6. Ethan O Perlstein

    Perlara PBC, Berkeley, United States
    Competing interests
    Ethan O Perlstein, is CEO of Maggie's Pearl, LLC and CEO of Perlara PBC. He holds an ownership stake in both companies..
  7. Giuseppina Andreotti

    Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
    For correspondence
    gandreotti@icb.cnr.it
    Competing interests
    No competing interests declared.
  8. Gregory I Lang

    Department of Biological Sciences, Lehigh University, Bethlehem, United States
    For correspondence
    glang@lehigh.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7931-0428

Funding

National Institutes of Health (R01GM127420)

  • Gregory I Lang

National Institutes of Health (P20GM139769)

  • Richard Steet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Vignogna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,358
    views
  • 171
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan C Vignogna
  2. Mariateresa Allocca
  3. Maria Monticelli
  4. Joy W Norris
  5. Richard Steet
  6. Ethan O Perlstein
  7. Giuseppina Andreotti
  8. Gregory I Lang
(2022)
Evolutionary rescue of phosphomannomutase deficiency in yeast models of human disease
eLife 11:e79346.
https://doi.org/10.7554/eLife.79346

Share this article

https://doi.org/10.7554/eLife.79346

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.