Whole-brain comparison of rodent and human brains using spatial transcriptomics

  1. Antoine Beauchamp  Is a corresponding author
  2. Yohan Yee
  3. Benjamin C Darwin
  4. Armin Raznahan
  5. Rogier B Mars  Is a corresponding author
  6. Jason P Lerch  Is a corresponding author
  1. University of Toronto, Canada
  2. Mouse Imaging Centre, Canada
  3. Hospital for Sick Children, Canada
  4. National Institute of Mental Health, United States
  5. Radboud University Nijmegen, Netherlands
  6. University of Oxford, United Kingdom

Abstract

The ever-increasing use of mouse models in preclinical neuroscience research calls for an improvement in the methods used to translate findings between mouse and human brains. Previously we showed that the brains of primates can be compared in a direct quantitative manner using a common reference space built from white matter tractography data (Rogier B. Mars et al., 2018b). Here we extend the common space approach to evaluate the similarity of mouse and human brain regions using openly accessible brain-wide transcriptomic data sets. We show that mouse-human homologous genes capture broad patterns of neuroanatomical organization, but that the resolution of cross-species correspondences can be improved using a novel supervised machine learning approach. Using this method, we demonstrate that sensorimotor subdivisions of the neocortex exhibit greater similarity between species, compared with supramodal subdivisions, and that mouse isocortical regions separate into sensorimotor and supramodal clusters based on their similarity to human cortical regions. We also find that mouse and human striatal regions are strongly conserved, with the mouse caudoputamen exhibiting an equal degree of similarity to both the human caudate and putamen.

Data availability

The Allen Mouse Brain Atlas and Allen Human Brain Atlas data sets are openly accessible and can be downloaded from the Allen Institute's API (http://api.brain-map.org). All of the code and additional data needed to generate this analysis, including figures and manuscript, is accessible at https://github.com/abeaucha/MouseHumanTranscriptomicSimilarity/

The following previously published data sets were used

Article and author information

Author details

  1. Antoine Beauchamp

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    For correspondence
    antoine.beauchamp@mail.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0008-7471
  2. Yohan Yee

    Mouse Imaging Centre, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7083-1932
  3. Benjamin C Darwin

    Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8689-046X
  4. Armin Raznahan

    Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5622-1190
  5. Rogier B Mars

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    rogier.mars@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  6. Jason P Lerch

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    jason.lerch@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canadian Institutes of Health Research (Doctoral Award - Frederick Banting and Charles Best Canada Graduate Scholarships (GSD-165737))

  • Antoine Beauchamp

Wellcome Trust (203139/Z/16/Z)

  • Rogier B Mars
  • Jason P Lerch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,377
    views
  • 652
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antoine Beauchamp
  2. Yohan Yee
  3. Benjamin C Darwin
  4. Armin Raznahan
  5. Rogier B Mars
  6. Jason P Lerch
(2022)
Whole-brain comparison of rodent and human brains using spatial transcriptomics
eLife 11:e79418.
https://doi.org/10.7554/eLife.79418

Share this article

https://doi.org/10.7554/eLife.79418

Further reading

    1. Evolutionary Biology
    Nagatoshi Machii, Ryo Hatashima ... Masato Nikaido
    Research Article

    Cichlid fishes inhabiting the East African Great Lakes, Victoria, Malawi, and Tanganyika, are textbook examples of parallel evolution, as they have acquired similar traits independently in each of the three lakes during the process of adaptive radiation. In particular, ‘hypertrophied lip’ has been highlighted as a prominent example of parallel evolution. However, the underlying molecular mechanisms remain poorly understood. In this study, we conducted an integrated comparative analysis between the hypertrophied and normal lips of cichlids across three lakes based on histology, proteomics, and transcriptomics. Histological and proteomic analyses revealed that the hypertrophied lips were characterized by enlargement of the proteoglycan-rich layer, in which versican and periostin proteins were abundant. Transcriptome analysis revealed that the expression of extracellular matrix-related genes, including collagens, glycoproteins, and proteoglycans, was higher in hypertrophied lips, regardless of their phylogenetic relationships. In addition, the genes in Wnt signaling pathway, which is involved in promoting proteoglycan expression, was highly expressed in both the juvenile and adult stages of hypertrophied lips. Our comprehensive analyses showed that hypertrophied lips of the three different phylogenetic origins can be explained by similar proteomic and transcriptomic profiles, which may provide important clues into the molecular mechanisms underlying phenotypic parallelisms in East African cichlids.

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.