Quantifying dynamic facial expressions under naturalistic conditions

  1. Jayson Jeganathan  Is a corresponding author
  2. Megan Campbell
  3. Matthew Hyett
  4. Gordon Parker
  5. Michael Breakspear
  1. University of Newcastle Australia, Australia
  2. University of Western Australia, Australia
  3. University of New South Wales, Australia

Abstract

Facial affect is expressed dynamically - a giggle, grimace, or an agitated frown. However, the characterization of human affect has relied almost exclusively on static images. This approach cannot capture the nuances of human communication or support the naturalistic assessment of affective disorders. Using the latest in machine vision and systems modelling, we studied dynamic facial expressions of people viewing emotionally salient film clips. We found that the apparent complexity of dynamic facial expressions can be captured by a small number of simple spatiotemporal states - composites of distinct facial actions, each expressed with a unique spectral fingerprint. Sequential expression of these states is common across individuals viewing the same film stimuli but varies in those with the melancholic subtype of major depressive disorder. This approach provides a platform for translational research, capturing dynamic facial expressions under naturalistic conditions and enabling new quantitative tools for the study of affective disorders and related mental illnesses.

Data availability

The DISFA dataset is publically available at http://mohammadmahoor.com/disfa/, and can be accessed by application at http://mohammadmahoor.com/disfa-contact-form/. The melancholia dataset is not publically available due to ethical and privacy considerations for patients, and because the original ethics approval does not permit sharing this data.

The following previously published data sets were used

Article and author information

Author details

  1. Jayson Jeganathan

    School of Psychology, University of Newcastle Australia, Newcastle, Australia
    For correspondence
    jayson.jeganathan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4175-918X
  2. Megan Campbell

    School of Psychology, University of Newcastle Australia, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4051-1529
  3. Matthew Hyett

    School of Psychological Sciences, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Gordon Parker

    School of Psychiatry, University of New South Wales, Kensington, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Breakspear

    School of Psychology, University of Newcastle Australia, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4943-3969

Funding

Health Education and Training Institute Award in Psychiatry and Mental Health

  • Jayson Jeganathan

Rainbow Foundation

  • Jayson Jeganathan
  • Michael Breakspear

National Health and Medical Research Council (1118153,10371296,1095227)

  • Michael Breakspear

Australian Research Council (CE140100007)

  • Michael Breakspear

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants provided informed consent for the study. Ethics approval was obtained from the University of New South Wales (HREC-08077) and the University of Newcastle (H-2020-0137). Figure 1a shows images of a person's face from the DISFA dataset. Consent to reproduce their image in publications was obtained by the original DISFA authors, and is detailed in the dataset agreement (http://mohammadmahoor.com/disfa-contact-form/) and the original paper (https://ieeexplore.ieee.org/document/6475933).

Copyright

© 2022, Jeganathan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,598
    views
  • 281
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jayson Jeganathan
  2. Megan Campbell
  3. Matthew Hyett
  4. Gordon Parker
  5. Michael Breakspear
(2022)
Quantifying dynamic facial expressions under naturalistic conditions
eLife 11:e79581.
https://doi.org/10.7554/eLife.79581

Share this article

https://doi.org/10.7554/eLife.79581

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.