Identification of paired-related Homeobox Protein 1 as a key mesenchymal transcription factor in pulmonary fibrosis

  1. Emmeline Marchal-Duval
  2. Méline Homps-Legrand
  3. Antoine Froidure
  4. Madeleine Jaillet
  5. Mada Ghanem
  6. Deneuville Lou
  7. Aurélien Justet
  8. Arnaud Maurac
  9. Aurelie Vadel
  10. Emilie Fortas
  11. Aurelie Cazes
  12. Audrey Joannes
  13. Laura Giersh
  14. Herve Mal
  15. Pierre Mordant
  16. Tristan Piolot
  17. Marin Truchin
  18. Carine M Mounier
  19. Ksenija Schirduan
  20. Martina Korfei
  21. Andreas Gunther
  22. Bernard Mari
  23. Frank Jaschinski
  24. Bruno Crestani
  25. Arnaud A Mailleux  Is a corresponding author
  1. Université Paris Cité, Inserm, France
  2. Université Catholique de Louvain, Belgium
  3. Univ Rennes, Inserm, EHESP, France
  4. Assistance Publique - Hôpitaux de Paris, France
  5. Collège de France, CNRS-UMR7241, INSERM-U1050, PSL Research University,, France
  6. Université Côte d'Azur, CNRS, France
  7. Secarna Pharmaceuticals GmbH and Co KG, Germany
  8. University of Giessen, Germany

Abstract

Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-b/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-β driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-β response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.

Data availability

For gene expression profiling, publicly available datasets were obtained from NCBI Gene Expression Omnibus (GSE2052, GSE24206 and GSE21411) , IPF Cell Atlas (www.ipfcellatlas.com) or FibroXplorer (www.fibroXplorer.com). Newly generated expression dataset has been deposited in the Gene Expression Omnibus GSE161364. All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Emmeline Marchal-Duval

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  2. Méline Homps-Legrand

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  3. Antoine Froidure

    Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    Antoine Froidure, received an unrestricted research grant from Boehringer Ingelheim, consulting fees from Boehringer Ingelheim and payment or honoraria from Boehringer Ingelheim and Roche that were paid to their institution. The author has no other competing interests to declare..
  4. Madeleine Jaillet

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  5. Mada Ghanem

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  6. Deneuville Lou

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  7. Aurélien Justet

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  8. Arnaud Maurac

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  9. Aurelie Vadel

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  10. Emilie Fortas

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  11. Aurelie Cazes

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  12. Audrey Joannes

    Institut de recherche en santé, environnement et travail, Univ Rennes, Inserm, EHESP, Rennes, France
    Competing interests
    No competing interests declared.
  13. Laura Giersh

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  14. Herve Mal

    Service de Pneumologie et Transplantation, Assistance Publique - Hôpitaux de Paris, Paris, France
    Competing interests
    No competing interests declared.
  15. Pierre Mordant

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    Competing interests
    No competing interests declared.
  16. Tristan Piolot

    Collège de France, CNRS-UMR7241, INSERM-U1050, PSL Research University,, Paris, France
    Competing interests
    No competing interests declared.
  17. Marin Truchin

    Université Côte d'Azur, CNRS, Valbonne, France
    Competing interests
    No competing interests declared.
  18. Carine M Mounier

    Université Côte d'Azur, CNRS, Valbonne, France
    Competing interests
    No competing interests declared.
  19. Ksenija Schirduan

    Secarna Pharmaceuticals GmbH and Co KG, Planegg, Germany
    Competing interests
    Ksenija Schirduan, was a former employee of Secarna Pharmaceuticals..
  20. Martina Korfei

    Department of Internal Medicine II, University of Giessen, Gießen, Germany
    Competing interests
    No competing interests declared.
  21. Andreas Gunther

    Department of Internal Medicine, University of Giessen, Gießen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2187-0975
  22. Bernard Mari

    Université Côte d'Azur, CNRS, Valbonne, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0422-9182
  23. Frank Jaschinski

    Secarna Pharmaceuticals GmbH and Co KG, Planegg, Germany
    Competing interests
    Frank Jaschinski, is an employee of Secarna Pharmaceuticals..
  24. Bruno Crestani

    Service de Pneumologie, Assistance Publique - Hôpitaux de Paris, Paris, France
    Competing interests
    Bruno Crestani, received grants from Boehringer Ingelheim, received consulting fees, payment or honoraria, and/or support for meetings and/or travel from Apellis, Astra Zeneca, BMS, Boehringer Ingelheim, Novartis, Sanofi. BC also participates on a data safety monitoring board or advisory board for Apellis, BMS, Boehringer Ingelheim, Sanofi and is a member on the Member of the board of trustee of the Fondation du Souffle. The author has no other competing interests to declare..
  25. Arnaud A Mailleux

    Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Inserm, Paris, France
    For correspondence
    arnaud.mailleux@inserm.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4191-1778

Funding

Agence Nationale de la Recherche (JCJC ANR-16-CE14-00)

  • Arnaud A Mailleux

European Respiratory Society (ERS-LTRF 2015 - 4476)

  • Antoine Froidure

Fondation pour la Recherche Médicale (FDT2021060129750)

  • Méline Homps-Legrand

Fondation pour la Recherche Médicale (FDM41320)

  • Aurélien Justet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in accordance with the Directive 2010/63/EU of the European Parliament and approved by the local Animal ethics committee ("Comité d'éthique Paris Nord 121", APAFiS #4778 Etudedufacteurdetran_2016031617411315).

Human subjects: The study on human material was performed in accordance with the Declaration of Helsinki and approved by the local ethics committee (CPP Ile de France 1, No.0811760). Written informed consent was obtained from all subjects.

Copyright

© 2023, Marchal-Duval et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,388
    views
  • 249
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emmeline Marchal-Duval
  2. Méline Homps-Legrand
  3. Antoine Froidure
  4. Madeleine Jaillet
  5. Mada Ghanem
  6. Deneuville Lou
  7. Aurélien Justet
  8. Arnaud Maurac
  9. Aurelie Vadel
  10. Emilie Fortas
  11. Aurelie Cazes
  12. Audrey Joannes
  13. Laura Giersh
  14. Herve Mal
  15. Pierre Mordant
  16. Tristan Piolot
  17. Marin Truchin
  18. Carine M Mounier
  19. Ksenija Schirduan
  20. Martina Korfei
  21. Andreas Gunther
  22. Bernard Mari
  23. Frank Jaschinski
  24. Bruno Crestani
  25. Arnaud A Mailleux
(2023)
Identification of paired-related Homeobox Protein 1 as a key mesenchymal transcription factor in pulmonary fibrosis
eLife 12:e79840.
https://doi.org/10.7554/eLife.79840

Share this article

https://doi.org/10.7554/eLife.79840

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.