Evolution of cell size control is canalized towards adders or sizers by cell cycle structure and selective pressures

  1. Felix Proulx-Giraldeau
  2. Jan M Skotheim
  3. Paul François  Is a corresponding author
  1. McGill University, Canada
  2. Stanford University, United States

Abstract

Cell size is controlled to be within a specific range to support physiological function. To control their size, cells use diverse mechanisms ranging from ‘sizers’, in which differences in cell size are compensated for in a single cell division cycle, to ‘adders’, in which a constant amount of cell growth occurs in each cell cycle. This diversity raises the question why a particular cell would implement one rather than another mechanism? To address this question, we performed a series of simulations evolving cell size control networks. The size control mechanism that evolved was influenced by both cell cycle structure and specific selection pressures. Moreover, evolved networks recapitulated known size control properties of naturally occurring networks. If the mechanism is based on a G1 size control and an S/G2/M timer, as found for budding yeast and some human cells, adders likely evolve. But, if the G1 phase is significantly longer than the S/G2/M phase, as is often the case in mammalian cells in vivo, sizers become more likely. Sizers also evolve when the cell cycle structure is inverted so that G1 is a timer, while S/G2/M performs size control, as is the case for the fission yeast S. pombe. For some size control networks, cell size consistently decreases in each cycle until a burst of cell cycle inhibitor drives an extended G1 phase much like the cell division cycle of the green algae Chlamydomonas. That these size control networks evolved such self-organized criticality shows how the evolution of complex systems can drive the emergence of critical processes.

Data availability

This is a theory paper, so there is no experimental data, and all results were generated by the code. The code used is freely available at https://github.com/FelixPG/PhiEvo_SizeControl . Reference to the code has been added in the text.

Article and author information

Author details

  1. Felix Proulx-Giraldeau

    Department of Physics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan M Skotheim

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul François

    Department of Physics, McGill University, Montreal, Canada
    For correspondence
    paul.francois2@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2223-839X

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • Paul François

Natural Sciences and Engineering Research Council of Canada (Alexander Graham Bell Canada Graduate Scholarship)

  • Felix Proulx-Giraldeau

Fonds de recherche du Québec – Nature et technologies (Doctoral research scholarship)

  • Felix Proulx-Giraldeau

National Institutes of Health (NIH R35 GM134858)

  • Jan M Skotheim

Chan Zuckerberg Initiative (Biohub Investigator Award)

  • Jan M Skotheim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Proulx-Giraldeau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,990
    views
  • 410
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix Proulx-Giraldeau
  2. Jan M Skotheim
  3. Paul François
(2022)
Evolution of cell size control is canalized towards adders or sizers by cell cycle structure and selective pressures
eLife 11:e79919.
https://doi.org/10.7554/eLife.79919

Share this article

https://doi.org/10.7554/eLife.79919

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.