The role of conjunctive representations in prioritizing and selecting planned actions
Abstract
For flexible goal-directed behavior, prioritizing and selecting a specific action among multiple candidates is often important. Working memory has long been assumed to play a role in prioritization and planning, while bridging cross-temporal contingencies during action selection. However, studies of working memory have mostly focused on memory for single components of an action plan, such as a rule or a stimulus, rather than management of all of these elements during planning. Therefore, it is not known how post-encoding prioritization and selection operate on the entire profile of representations for prospective actions. Here, we assessed how such control processes unfold over action representations, highlighting the role of conjunctive representations that nonlinearly integrate task-relevant features during maintenance and prioritization of action plans. For each trial, participants prepared two independent rule-based actions simultaneously, then they were retro-cued to select one as their response. Prior to the start of the trial, one rule-based action was randomly assigned to be high priority by cueing that it was more likely to be tested. We found that both full action plans were maintained as conjunctive representations during action preparation, regardless of priority. However, during output selection, the conjunctive representation of the high priority action plan was more enhanced and readily selected as an output. Further, the strength of the high priority conjunctive representation was associated with behavioral interference when the low priority action was tested. Thus, multiple alternate upcoming actions were maintained as integrated representations and served as the target of post-encoding attentional selection mechanisms to prioritize and select an action from within working memory.
Data availability
Data and analyses are available through OSF (https://https://osf.io/4mx8c/). Specifically, the repository contains trial-by-trial behavioral data files, and all relevant EEG data.
Article and author information
Author details
Funding
National Science Foundation (1734264)
- Ulrich Mayr
National Institute of Mental Health (MH125497)
- David Badre
National Institute of Neurological Disorders and Stroke (NS108380)
- David Badre
Multidisciplinary University Research Initiative (N00014-16-1-2832)
- David Badre
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Kikumoto et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,438
- views
-
- 230
- downloads
-
- 17
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.
-
- Neuroscience
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.