Impaired bone strength and bone microstructure in a novel early-onset osteoporotic rat model with a clinically relevant PLS3 mutation

  1. Jing Hu
  2. Bingna Zhou
  3. Xiaoyun Lin
  4. Qian Zhang
  5. Feifei Guan
  6. Lei Sun
  7. Jiayi Liu
  8. Ou Wang
  9. Yan Jiang
  10. Wei-bo Xia
  11. Xiaoping Xing
  12. Mei Li  Is a corresponding author
  1. Peking Union Medical College Hospital, China
  2. Peking Union Medical College, China

Abstract

Plastin 3 (PLS3), a protein involved in formation of filamentous actin (F-actin) bundles, is important in human bone health. Recent studies identify PLS3 as a novel bone regulator and PLS3 mutations can lead to a rare monogenic early-onset osteoporosis. However, the mechanism of PLS3 mutation leading to osteoporosis is unknown, and its effective treatment strategies have not been established. Here we have constructed a novel rat model with clinically relevant hemizygous E10-16del mutation in PLS3 (PLS3E10-16del/0) that recapitulates the osteoporotic phenotypes with obviously thinner cortical thickness, significant decreases in yield load, maximum load, and breaking load of femora at 3, 6, 9 months old compared to wild type rats. Histomorphometric analysis indicates a significantly lower mineral apposition rate in PLS3E10-16del/0 rats. Treatment with alendronate (1.0 ug/kg per day) or teriparatide (40ug/kg five times weekly) for 8 weeks significantly improves bone mass and bone microarchitecture, and bone strength is significantly increased after teriparatide treatment (P<0.05). Thus, our results indicate that PLS3 plays an important role in the regulation of bone microstructure and bone strength, and we provide a novel animal model for the study of X-linked early-onset osteoporosis. Alendronate and teriparatide treatment could be a potential treatment for early-onset osteoporosis induced by PLS3 mutation.

Data availability

All data analyzed during this study are included in the manuscript and supporting file. Source Data files have been provided for Figures 1-4.

Article and author information

Author details

  1. Jing Hu

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Bingna Zhou

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoyun Lin

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qian Zhang

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Feifei Guan

    Institute of Laboratory Animal Science, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Sun

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiayi Liu

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ou Wang

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yan Jiang

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Wei-bo Xia

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiaoping Xing

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Mei Li

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    For correspondence
    limeilzh@sina.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4380-3511

Funding

National Key Research and Development Program of China (2018YFA0800801,2021YFC2501704)

  • Mei Li

Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-C&T-B-007,2021-I2M-1-051)

  • Mei Li

National Natural Science Foundation of China (No.81873668,82070908)

  • Mei Li

Beijing Natural Science Foundation (7202153)

  • Mei Li

Fundamental Research Funds for the Central Universities (3332022102)

  • Jing Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Peking Union Medical College Hospital (XHDW-2021-027). Every effort was made to minimize pain and suffering by providing support when necessary and choosing ethical endpoints.

Copyright

© 2023, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 448
    views
  • 90
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jing Hu
  2. Bingna Zhou
  3. Xiaoyun Lin
  4. Qian Zhang
  5. Feifei Guan
  6. Lei Sun
  7. Jiayi Liu
  8. Ou Wang
  9. Yan Jiang
  10. Wei-bo Xia
  11. Xiaoping Xing
  12. Mei Li
(2023)
Impaired bone strength and bone microstructure in a novel early-onset osteoporotic rat model with a clinically relevant PLS3 mutation
eLife 12:e80365.
https://doi.org/10.7554/eLife.80365

Share this article

https://doi.org/10.7554/eLife.80365

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.