Regulation of store-operated Ca2+ entry by IP3 receptors independent of their ability to release Ca2+

  1. Pragnya Chakraborty
  2. Bipan Kumar Deb
  3. Vikas Arige
  4. Thasneem Musthafa
  5. Sundeep Malik
  6. David I Yule
  7. Colin W Taylor  Is a corresponding author
  8. Gaiti Hasan  Is a corresponding author
  1. National Centre for Biological Sciences, India
  2. University of California, Berkeley, United States
  3. University of Rochester, United States
  4. University of Cambridge, United Kingdom

Abstract

Loss of endoplasmic reticular (ER) Ca2+ activates store-operated Ca2+ entry (SOCE) by causing the ER localized Ca2+ sensor STIM to unfurl domains that activate Orai channels in the plasma membrane at membrane contact sites (MCS). Here we demonstrate a novel mechanism by which the inositol 1,4,5 trisphosphate receptor (IP3R), an ER-localized IP3-gated Ca2+ channel, regulates neuronal SOCE. In human neurons, SOCE evoked by pharmacological depletion of ER-Ca2+ is attenuated by loss of IP3Rs, and restored by expression of IP3Rs even when they cannot release Ca2+, but only if the IP3Rs can bind IP3. Imaging studies demonstrate that IP3Rs enhance association of STIM1 with Orai1 in neuronal cells with empty stores; this requires an IP3-binding site, but not a pore. Convergent regulation by IP3Rs, may tune neuronal SOCE to respond selectively to receptors that generate IP3.

Data availability

The data supporting the findings of this study are available within the manuscript. All other data supporting the findings of this study are available in source data file of respective figures.

Article and author information

Author details

  1. Pragnya Chakraborty

    Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Bipan Kumar Deb

    Department of Molecular and Cell Biology, University of California, Berkeley, California, United States
    Competing interests
    No competing interests declared.
  3. Vikas Arige

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
  4. Thasneem Musthafa

    Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  5. Sundeep Malik

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
  6. David I Yule

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6743-0668
  7. Colin W Taylor

    Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    cwt1000@cam.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7771-1044
  8. Gaiti Hasan

    Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    gaiti@ncbs.res.in
    Competing interests
    Gaiti Hasan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-383X

Funding

Department of Science and Technology, Ministry of Science and Technology, India (DST/INSPIRE Fellowship/2017/IF170360)

  • Pragnya Chakraborty

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR6371/COE/34/19/2013)

  • Gaiti Hasan

Tata Institute of Fundamental Research (NCBS,TIFR core support)

  • Gaiti Hasan

Wellcome Trust (101844)

  • Colin W Taylor

Biotechnology and Biological Sciences Research Council (BB/T012986/1)

  • Colin W Taylor

NIH (DE014756)

  • David I Yule

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Chakraborty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,006
    views
  • 347
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pragnya Chakraborty
  2. Bipan Kumar Deb
  3. Vikas Arige
  4. Thasneem Musthafa
  5. Sundeep Malik
  6. David I Yule
  7. Colin W Taylor
  8. Gaiti Hasan
(2023)
Regulation of store-operated Ca2+ entry by IP3 receptors independent of their ability to release Ca2+
eLife 12:e80447.
https://doi.org/10.7554/eLife.80447

Share this article

https://doi.org/10.7554/eLife.80447

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.