Regulation of store-operated Ca2+ entry by IP3 receptors independent of their ability to release Ca2+
Abstract
Loss of endoplasmic reticular (ER) Ca2+ activates store-operated Ca2+ entry (SOCE) by causing the ER localized Ca2+ sensor STIM to unfurl domains that activate Orai channels in the plasma membrane at membrane contact sites (MCS). Here we demonstrate a novel mechanism by which the inositol 1,4,5 trisphosphate receptor (IP3R), an ER-localized IP3-gated Ca2+ channel, regulates neuronal SOCE. In human neurons, SOCE evoked by pharmacological depletion of ER-Ca2+ is attenuated by loss of IP3Rs, and restored by expression of IP3Rs even when they cannot release Ca2+, but only if the IP3Rs can bind IP3. Imaging studies demonstrate that IP3Rs enhance association of STIM1 with Orai1 in neuronal cells with empty stores; this requires an IP3-binding site, but not a pore. Convergent regulation by IP3Rs, may tune neuronal SOCE to respond selectively to receptors that generate IP3.
Data availability
The data supporting the findings of this study are available within the manuscript. All other data supporting the findings of this study are available in source data file of respective figures.
Article and author information
Author details
Funding
Department of Science and Technology, Ministry of Science and Technology, India (DST/INSPIRE Fellowship/2017/IF170360)
- Pragnya Chakraborty
Department of Biotechnology, Ministry of Science and Technology, India (BT/PR6371/COE/34/19/2013)
- Gaiti Hasan
Tata Institute of Fundamental Research (NCBS,TIFR core support)
- Gaiti Hasan
Wellcome Trust (101844)
- Colin W Taylor
Biotechnology and Biological Sciences Research Council (BB/T012986/1)
- Colin W Taylor
NIH (DE014756)
- David I Yule
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Chakraborty et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,119
- views
-
- 357
- downloads
-
- 14
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Genetics and Genomics
A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.
-
- Cell Biology
- Immunology and Inflammation
Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.