ProteInfer, deep neural networks for protein functional inference

  1. Theo Sanderson  Is a corresponding author
  2. Maxwell L Bileschi
  3. David Belanger
  4. Lucy J Colwell
  1. The Francis Crick Institute, United Kingdom
  2. Google AI, United States

Abstract

Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions - EC numbers and GO terms - directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user's personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.

Data availability

Source code is available on GitHub from https://github.com/google-research/proteinfer. Processed TensorFlow files are available from the indicated URLs. Raw training data is from UniProt.

The following previously published data sets were used

Article and author information

Author details

  1. Theo Sanderson

    The Francis Crick Institute, London, United Kingdom
    For correspondence
    theo.sanderson@crick.ac.uk
    Competing interests
    Theo Sanderson, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4177-2851
  2. Maxwell L Bileschi

    Google AI, Boston, United States
    Competing interests
    Maxwell L Bileschi, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..
  3. David Belanger

    Google AI, Boston, United States
    Competing interests
    David Belanger, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..
  4. Lucy J Colwell

    Google AI, Boston, United States
    Competing interests
    Lucy J Colwell, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..

Funding

Google

  • Theo Sanderson
  • Maxwell L Bileschi
  • David Belanger
  • Lucy J Colwell

The authors were employed by the funder while completing this work.

Copyright

© 2023, Sanderson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,523
    views
  • 1,020
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theo Sanderson
  2. Maxwell L Bileschi
  3. David Belanger
  4. Lucy J Colwell
(2023)
ProteInfer, deep neural networks for protein functional inference
eLife 12:e80942.
https://doi.org/10.7554/eLife.80942

Share this article

https://doi.org/10.7554/eLife.80942

Further reading

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.