ProteInfer, deep neural networks for protein functional inference

  1. Theo Sanderson  Is a corresponding author
  2. Maxwell L Bileschi
  3. David Belanger
  4. Lucy J Colwell
  1. The Francis Crick Institute, United Kingdom
  2. Google AI, United States

Abstract

Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions - EC numbers and GO terms - directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user's personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.

Data availability

Source code is available on GitHub from https://github.com/google-research/proteinfer. Processed TensorFlow files are available from the indicated URLs. Raw training data is from UniProt.

The following previously published data sets were used

Article and author information

Author details

  1. Theo Sanderson

    The Francis Crick Institute, London, United Kingdom
    For correspondence
    theo.sanderson@crick.ac.uk
    Competing interests
    Theo Sanderson, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4177-2851
  2. Maxwell L Bileschi

    Google AI, Boston, United States
    Competing interests
    Maxwell L Bileschi, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..
  3. David Belanger

    Google AI, Boston, United States
    Competing interests
    David Belanger, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..
  4. Lucy J Colwell

    Google AI, Boston, United States
    Competing interests
    Lucy J Colwell, performed research as part of their employment at Google LLC. Google is a technology company that sells machine learning services as part of its business. Portions of this work are covered by US patent WO2020210591A1, filed by Google..

Funding

Google

  • Theo Sanderson
  • Maxwell L Bileschi
  • David Belanger
  • Lucy J Colwell

The authors were employed by the funder while completing this work.

Copyright

© 2023, Sanderson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,022
    views
  • 1,053
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theo Sanderson
  2. Maxwell L Bileschi
  3. David Belanger
  4. Lucy J Colwell
(2023)
ProteInfer, deep neural networks for protein functional inference
eLife 12:e80942.
https://doi.org/10.7554/eLife.80942

Share this article

https://doi.org/10.7554/eLife.80942

Further reading

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.