Hemocyte differentiation to the megacyte lineage enhances mosquito immunity against Plasmodium

  1. Ana Beatriz Ferreira Barletta
  2. Banhisikha Saha
  3. Nathanie Trisnadi
  4. Octavio Talyuli
  5. Gianmarco Raddi
  6. Carolina Barillas-Mury  Is a corresponding author
  1. National Institute of Allergy and Infectious Diseases, United States
  2. Atropos Therapeutics Inc, United States
  3. Universidade Federal Rural do Rio de Janeiro, Brazil
  4. University of Cambridge, United Kingdom

Abstract

Activation of Toll signaling in Anopheles gambiae by silencing Cactus, a suppressor of this pathway, enhances local release of hemocyte-derived microvesicles (HdMv), promoting activation of the mosquito complement-like system, which eliminates Plasmodium ookinetes. We uncovered the mechanism of this immune enhancement. Cactus silencing triggers a Rel1-mediated differentiation of granulocytes to the megacyte lineage, a new subpopulation of giant cells, resulting in a dramatic increase in the proportion of circulating megacytes. Megacytes are very plastic cells that are massively recruited to the basal midgut surface in response to Plasmodium infection. We show that Toll signaling modulates hemocyte differentiation and that megacyte recruitment to the midgut greatly enhances mosquito immunity against Plasmodium.

Data availability

Sequencing data have been deposited in ArrayExpress under this linkhttps://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11252

The following data sets were generated

Article and author information

Author details

  1. Ana Beatriz Ferreira Barletta

    Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9913-3775
  2. Banhisikha Saha

    Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    No competing interests declared.
  3. Nathanie Trisnadi

    Atropos Therapeutics Inc, San Carlos, United States
    Competing interests
    Nathanie Trisnadi, is affiliated with Atropos Therapeutics Inc.. The author has no financial interests to declare.
  4. Octavio Talyuli

    Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
    Competing interests
    No competing interests declared.
  5. Gianmarco Raddi

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1056-5403
  6. Carolina Barillas-Mury

    Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, United States
    For correspondence
    cbarillas@niaid.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4039-6199

Funding

No external funding was received for this work

Ethics

Animal experimentation: Public Health Service Animal Welfare Assurance #A4149-01 guidelines were followed according to the National Institutes of Health Animal (NIH) Office of Animal Care and Use (OACU). These studies were done according to the NIH animal study protocol (ASP) approved by the NIH Animal Care and User Committee (ACUC), with approval ID ASP-LMVR5.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,765
    views
  • 367
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Beatriz Ferreira Barletta
  2. Banhisikha Saha
  3. Nathanie Trisnadi
  4. Octavio Talyuli
  5. Gianmarco Raddi
  6. Carolina Barillas-Mury
(2022)
Hemocyte differentiation to the megacyte lineage enhances mosquito immunity against Plasmodium
eLife 11:e81116.
https://doi.org/10.7554/eLife.81116

Share this article

https://doi.org/10.7554/eLife.81116

Further reading

    1. Microbiology and Infectious Disease
    McKenna Harpring, Junghoon Lee ... John V Cox
    Research Article

    Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that FtsK, a chromosomal translocase, is critical for divisome assembly in Ct. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical role of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.