Regulated degradation of the inner nuclear membrane protein SUN2 maintains nuclear envelope architecture and function

Abstract

Nuclear architecture and functions depend on dynamic interactions between nuclear components (such as chromatin) and inner nuclear membrane (INM) proteins. Mutations in INM proteins interfering with these interactions result in disease. However, mechanisms controlling the levels and turnover of INM proteins remain unknown. Here, we describe a mechanism of regulated degradation of the INM SUN domain-containing protein 2 (SUN2). We show that Casein Kinase II and the C-terminal domain Nuclear Envelope Phosphatase 1 (CTDNEP1) have opposing effects on SUN2 levels by regulating SUN2 binding to the ubiquitin ligase Skp/Cullin1/F-BoxβTrCP (SCFβTrCP). Upon binding to phosphorylated SUN2, SCFβTrCP promotes its ubiquitination. Ubiquitinated SUN2 is membrane extracted by the AAA ATPase p97 and delivered to the proteasome for degradation. Importantly, accumulation of non-degradable SUN2 results in aberrant nuclear architecture, vulnerability to DNA damage and increased lagging chromosomes in mitosis. These findings uncover a central role of proteolysis in INM protein homeostasis.

Data availability

Sequencing data has been deposited European Nucleotide Archive repository and has the accession number PRJEB54102.

The following data sets were generated

Article and author information

Author details

  1. Logesvaran Krshnan

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6281-1587
  2. Wingyan Skyla Siu

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Van de Weijer

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0954-0228
  4. Daniel Hayward

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Elena Navarro Guerrero

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulrike Gruneberg

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Pedro Carvalho

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    pedro.carvalho@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9691-5277

Funding

European Research Council (817708)

  • Pedro Carvalho

Wellcome Trust (223153/Z/21/Z)

  • Pedro Carvalho

Cancer Research UK Discovery Programme (DRCNPG-Nov21\100004)

  • Ulrike Gruneberg

Medical Research Council (MR/K006703/1)

  • Ulrike Gruneberg

Edward Penley Abraham Fund (RF 280)

  • Ulrike Gruneberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Krshnan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,635
    views
  • 402
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Logesvaran Krshnan
  2. Wingyan Skyla Siu
  3. Michael Van de Weijer
  4. Daniel Hayward
  5. Elena Navarro Guerrero
  6. Ulrike Gruneberg
  7. Pedro Carvalho
(2022)
Regulated degradation of the inner nuclear membrane protein SUN2 maintains nuclear envelope architecture and function
eLife 11:e81573.
https://doi.org/10.7554/eLife.81573

Share this article

https://doi.org/10.7554/eLife.81573

Further reading

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.

    1. Cell Biology
    Hyunggu Hahn, Carole Daly ... Alex RB Thomsen
    Research Article

    Chemokine receptors are GPCRs that regulate the chemotactic migration of a wide variety of cells including immune and cancer cells. Most chemokine receptors contain features associated with the ability to stimulate G protein signaling during β-arrestin-mediated receptor internalization into endosomes. As endosomal signaling of certain non-GPCR receptors plays a major role in cell migration, we chose to investigate the potential role of endosomal chemokine receptor signaling on mechanisms governing this function. Applying a combination of pharmacological and cell biological approaches, we demonstrate that the model chemokine receptor CCR7 recruits G protein and β-arrestin simultaneously upon chemokine stimulation, which enables internalized receptors to activate G protein from endosomes. Furthermore, spatiotemporal-resolved APEX2 proteome profiling shows that endosomal CCR7 uniquely enriches specific Rho GTPase regulators as compared to plasma membrane CCR7, which is directly associated with enhanced activity of the Rho GTPase Rac1 and chemotaxis of immune T cells. As Rac1 drives the formation of membrane protrusions during chemotaxis, our findings suggest an important integrated function of endosomal chemokine receptor signaling in cell migration.