Computational design of peptides to target NaV1.7 channel with high potency and selectivity for the treatment of pain

  1. Phuong T Nguyen
  2. Hai M Nguyen
  3. Karen M Wagner
  4. Robert Stewart
  5. Vikrant Singh
  6. Parashar Thapa
  7. Yi-Je Chen
  8. Mark W Lillya
  9. Anh Tuan Ton
  10. Richard Kondo
  11. Andre Ghetti
  12. Michael W Pennington
  13. Bruce Hammock
  14. Theanne N Griffith
  15. Jon T Sack
  16. Heike Wulff  Is a corresponding author
  17. Vladimir Yarov-Yarovoy  Is a corresponding author
  1. University of California, Davis, United States
  2. University of California Davis Medical Center, United States
  3. AnaBios, United States
  4. AmbioPharm Inc, United States

Abstract

The voltage-gated sodium NaV1.7 channel plays a key role as a mediator of action potential propagation in C-fiber nociceptors and is an established molecular target for pain therapy. ProTx-II is a potent and moderately selective peptide toxin from tarantula venom that inhibits human NaV1.7 activation. Here we used available structural and experimental data to guide Rosetta design of potent and selective ProTx-II-based peptide inhibitors of human NaV1.7 channels. Functional testing of designed peptides using electrophysiology identified the PTx2-3127 and PTx2-3258 peptides with IC50s of 7 nM and 4 nM for hNaV1.7 and more than 1,000-fold selectivity over human NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.8, and NaV1.9 channels. PTx2-3127 inhibits NaV1.7 currents in mouse and human sensory neurons and shows efficacy in rat models of chronic and thermal pain when administered intrathecally. Rationally-designed peptide inhibitors of human NaV1.7 channels have transformative potential to define a new class of biologics to treat pain.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Phuong T Nguyen

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    Phuong T Nguyen, is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the University of California.(U.S. provisionalapplication no. 63/358,684, filed July 6, 2022)..
  2. Hai M Nguyen

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    Hai M Nguyen, is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the University of California. (U.S. provisionalapplication no. 63/358,684, filed July 6, 2022)..
  3. Karen M Wagner

    Department of Entomology and Nematology, University of California, Davis, Davis, United States
    Competing interests
    Karen M Wagner, is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the University of California. (U.S. provisionalapplication no. 63/358,684, filed July 6, 2022)..
  4. Robert Stewart

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  5. Vikrant Singh

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. Parashar Thapa

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  7. Yi-Je Chen

    Department of Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  8. Mark W Lillya

    Department of Physiology and Membrane Biology, University of California Davis Medical Center, Davis, United States
    Competing interests
    No competing interests declared.
  9. Anh Tuan Ton

    AnaBios, San Diego, United States
    Competing interests
    Anh Tuan Ton, is affiliated with AnaBios Corporation. The author has no financial interests to declare..
  10. Richard Kondo

    AnaBios, San Diego, United States
    Competing interests
    Richard Kondo, is affiliated with AnaBios Corporation. The author has no financial interests to declare..
  11. Andre Ghetti

    AnaBios, San Diego, United States
    Competing interests
    Andre Ghetti, is affiliated with AnaBios Corporation. The author has no financial interests to declare..
  12. Michael W Pennington

    AmbioPharm Inc, North Augusta, United States
    Competing interests
    Michael W Pennington, is affiliated with Ambiopharm Inc. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5446-3447
  13. Bruce Hammock

    Department of Entomology and Nematology, University of California, Davis, Davis, United States
    Competing interests
    Bruce Hammock, is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the University of California. (U.S. provisionalapplication no. 63/358,684, filed July 6, 2022)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1408-8317
  14. Theanne N Griffith

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0090-6286
  15. Jon T Sack

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    Jon T Sack, Reviewing editor, eLife.Is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the application no. 63/358,684, filed July 6, 2022)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6975-982X
  16. Heike Wulff

    Department of Pharmacology, University of California, Davis, Davis, United States
    For correspondence
    hwulff@ucdavis.edu
    Competing interests
    Heike Wulff, is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the University of California. (U.S. provisionalapplication no. 63/358,684, filed July 6, 2022)..
  17. Vladimir Yarov-Yarovoy

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    For correspondence
    yarovoy@ucdavis.edu
    Competing interests
    Vladimir Yarov-Yarovoy, is named inventor on a patent application entitled 'Peptides targeting sodium channels to treat pain' based on this research, filed by the University of California. (U.S. provisionalapplication no. 63/358,684, filed July 6, 2022)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2325-4834

Funding

National Institute of Neurological Disorders and Stroke (UG3NS114956)

  • Phuong T Nguyen
  • Hai M Nguyen
  • Karen M Wagner
  • Robert Stewart
  • Vikrant Singh
  • Parashar Thapa
  • Yi-Je Chen
  • Mark W Lillya
  • Anh Tuan Ton
  • Richard Kondo
  • Andre Ghetti
  • Michael W Pennington
  • Bruce Hammock
  • Theanne N Griffith
  • Jon T Sack
  • Heike Wulff
  • Vladimir Yarov-Yarovoy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Research involving vertebrate animals was done at the University of California following protocols reviewed and approved by the UC Davis Institutional Animal Care and Use Committee (UCD IACUC) - Animal Welfare Assurance Number A3433-01. The animals were cared for by the Center for Laboratory Animal Science (CLAS) Veterinary Services under a currently AAALAC approved program under the direction of Dr. Laura Brignolo (Campus Veterinarian). The animals were housed in NIH-approved facilities in CLAS and are observed daily by technicians. Unusual events are reported to the on call veterinarian, as well as to the investigator according to posted protocols. Other maintenance veterinary care was conducted according to NIH guidelines on the Use and Care of Animals. Facilities were inspected regularly according to NIH and AAALAC guidelines.

Copyright

© 2022, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,496
    views
  • 486
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Phuong T Nguyen
  2. Hai M Nguyen
  3. Karen M Wagner
  4. Robert Stewart
  5. Vikrant Singh
  6. Parashar Thapa
  7. Yi-Je Chen
  8. Mark W Lillya
  9. Anh Tuan Ton
  10. Richard Kondo
  11. Andre Ghetti
  12. Michael W Pennington
  13. Bruce Hammock
  14. Theanne N Griffith
  15. Jon T Sack
  16. Heike Wulff
  17. Vladimir Yarov-Yarovoy
(2022)
Computational design of peptides to target NaV1.7 channel with high potency and selectivity for the treatment of pain
eLife 11:e81727.
https://doi.org/10.7554/eLife.81727

Share this article

https://doi.org/10.7554/eLife.81727

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.