Molecular and spatial profiling of the paraventricular nucleus of the thalamus

  1. Claire Gao  Is a corresponding author
  2. Chiraag A Gohel
  3. Yan Leng
  4. Jun Ma
  5. David Goldman
  6. Ariel J Levine
  7. Mario A Penzo  Is a corresponding author
  1. National Institute of Mental Health, United States
  2. National Institute on Alcohol Abuse and Alcoholism, United States
  3. National Institute of Child Health and Human Development, United States

Abstract

The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remains unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of thalamus yielded novel insight into the PVT's connectivity with cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.

Data availability

All RNA-seq data generated in our study have been deposited into the Gene Expression Omnibus repository (GSE208707). Raw images of RNAscope experiments are publicly available at: https://figshare.com/s/e2918829cabfdd0392fb.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Claire Gao

    National Institute of Mental Health, Bethesda, United States
    For correspondence
    claire.gao@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Chiraag A Gohel

    National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yan Leng

    National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Ma

    National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Goldman

    National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ariel J Levine

    National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0335-0730
  7. Mario A Penzo

    National Institute of Mental Health, Bethesda, United States
    For correspondence
    mario.penzo@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5368-1802

Funding

National Institute of Mental Health (1ZIAMH002950)

  • Mario A Penzo

National Institute of Neurological Disorders and Stroke (ZIANS003153)

  • Ariel J Levine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the Guide for the Care and Use of Laboratory Animals and were approved by the National Institute of Mental Health Animal Care and Use Committee. (See Methods - Mice)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,299
    views
  • 628
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claire Gao
  2. Chiraag A Gohel
  3. Yan Leng
  4. Jun Ma
  5. David Goldman
  6. Ariel J Levine
  7. Mario A Penzo
(2023)
Molecular and spatial profiling of the paraventricular nucleus of the thalamus
eLife 12:e81818.
https://doi.org/10.7554/eLife.81818

Share this article

https://doi.org/10.7554/eLife.81818

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.