Optimization of energy and time predicts dynamic speeds for human walking

  1. Rebecca Elizabeth Carlisle
  2. Arthur D Kuo  Is a corresponding author
  1. University of Calgary, Canada

Abstract

Humans make a number of choices when they walk, such as how fast and for how long. The preferred steady walking speed seems chosen to minimize energy expenditure per distance traveled. But the speed of actual walking bouts is not only steady, but rather a time-varying trajectory, which can also be modulated by task urgency or an individual’s movement vigor. Here we show that speed trajectories and durations of human walking bouts are explained better by an objective to minimize Energy and Time, meaning the total work or energy to reach destination, plus a cost proportional to bout duration. Applied to a computational model of walking dynamics, this objective predicts dynamic speed vs. time trajectories with inverted U shapes. Model and human experiment (𝑁 = 10) show that shorter bouts are unsteady and dominated by the time and effort of accelerating, and longer ones are steadier and faster and dominated by steady-state time and effort. Individual-dependent vigor may be characterized by the energy one is willing to spend to save a unit of time, which explains why some may walk faster than others, but everyone may have similar-shaped trajectories due to similar walking dynamics. Tradeoffs between energy and time costs can predict transient, steady, and vigor-related aspects of walking.

Data availability

Data (Carlisle and Kuo, 2023, https://github.com/kuo-lab/short_walk_experiment) and code (Kuo, 2023, https://github.com/kuo-lab/simplelocomotionmodel) for this study are in publicly-accessible archives.

The following data sets were generated

Article and author information

Author details

  1. Rebecca Elizabeth Carlisle

    Biomedical Engineering Program, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Arthur D Kuo

    Biomedical Engineering Program, University of Calgary, Calgary, Canada
    For correspondence
    arthurdkuo@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5233-9709

Funding

Natural Sciences and Engineering Research Council of Canada (CRC Chair,Tier 1)

  • Arthur D Kuo

Natural Sciences and Engineering Research Council of Canada (Discovery award)

  • Arthur D Kuo

Dr. Benno Nigg Research Chair

  • Arthur D Kuo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was provided by human participants according to University guidelines. Approval was granted by the Conjoint Health Research Ethics Board (CHREB) of University of Calgary, approval identifier REB21-1497.

Copyright

© 2023, Carlisle & Kuo

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,466
    views
  • 229
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca Elizabeth Carlisle
  2. Arthur D Kuo
(2023)
Optimization of energy and time predicts dynamic speeds for human walking
eLife 12:e81939.
https://doi.org/10.7554/eLife.81939

Share this article

https://doi.org/10.7554/eLife.81939

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.