Generating colorblind-friendly scatter plots for single-cell data

  1. Tejas Guha
  2. Elana J Fertig  Is a corresponding author
  3. Atul Deshpande  Is a corresponding author
  1. University of Maryland, College Park, United States
  2. Johns Hopkins University, United States

Abstract

Reduced-dimension or spatial in situ scatter plots are widely employed in bioinformatics papers analyzing single-cell data to present phenomena or cell-conditions of interest in cell groups. When displaying these cell groups, color is frequently the only graphical cue used to differentiate them. However, as the complexity of the information presented in these visualizations increases, the usefulness of color as the only visual cue declines, especially for the sizable readership with color-vision deficiencies (CVDs). In this paper, we present scatterHatch, an R package that creates easily interpretable scatter plots by redundant coding of cell groups using colors as well as patterns. We give examples to demonstrate how the scatterHatch plots are more accessible than simple scatter plots when simulated for various types of CVDs.

Data availability

The current manuscript is a computational study, so no new data have been generated for this manuscript. The scripts used for generating the figures in this manuscript are available at https://github.com/FertigLab/scatterHatch-paper.

The following previously published data sets were used

Article and author information

Author details

  1. Tejas Guha

    Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, United States
    Competing interests
    No competing interests declared.
  2. Elana J Fertig

    Department of Oncology, Johns Hopkins University, Baltimore, United States
    For correspondence
    ejfertig@jhmi.edu
    Competing interests
    Elana J Fertig, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3204-342X
  3. Atul Deshpande

    Department of Oncology, Johns Hopkins University, Baltimore, United States
    For correspondence
    adeshpande@jhu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5144-6924

Funding

National Cancer Institute (U01CA253403)

  • Elana J Fertig

National Cancer Institute (U01CA212007)

  • Elana J Fertig

National Cancer Institute (P01CA247886)

  • Elana J Fertig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Guha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,466
    views
  • 293
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tejas Guha
  2. Elana J Fertig
  3. Atul Deshpande
(2022)
Generating colorblind-friendly scatter plots for single-cell data
eLife 11:e82128.
https://doi.org/10.7554/eLife.82128

Share this article

https://doi.org/10.7554/eLife.82128

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.