Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking

  1. Lu Rao
  2. Peijun Li
  3. Xinglei Liu
  4. Qi Wang
  5. Alexander I Son
  6. Arne Gennerich  Is a corresponding author
  7. Judy Shih-Hwa Liu  Is a corresponding author
  8. Xiaoqin Fu  Is a corresponding author
  1. Albert Einstein College of Medicine, United States
  2. Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, China
  3. Brown University, United States
  4. Children's National Hospital, United States

Abstract

Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and by disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and by regulating the composition of the dynein motor complex.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for figure 2, 3, 4, figure 2-figure supplement 1 and table 1.

The following data sets were generated

Article and author information

Author details

  1. Lu Rao

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peijun Li

    Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xinglei Liu

    Department of Neurology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qi Wang

    Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander I Son

    Children's National Research Institute, Children's National Hospital, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Arne Gennerich

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    For correspondence
    arne.gennerich@einsteinmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8346-5473
  7. Judy Shih-Hwa Liu

    Department of Neurology, Brown University, Providence, United States
    For correspondence
    judy_liu@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaoqin Fu

    Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
    For correspondence
    fuxq@wzhealth.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6354-8960

Funding

National Natural Science Foundation of China (81971425)

  • Xiaoqin Fu

National Natural Science Foundation of China (81871035)

  • Peijun Li

Natural Science Foundation of Zhejiang Province (LZ09H090001)

  • Peijun Li

Natural Science Foundation of Zhejiang Province (LY20H040002)

  • Xiaoqin Fu

National Institutes of Health (R01GM098469)

  • Arne Gennerich

National Institutes of Health (R01NS114636)

  • Arne Gennerich

National Institutes of Health (RO1NS104428-01)

  • Judy Shih-Hwa Liu

Brain and Behavior Research Foundation

  • Judy Shih-Hwa Liu

Whitehall Foundation

  • Judy Shih-Hwa Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Committee on the Ethics of Animal Experiments of Wenzhou Medical University (Permit number: wydw2019-0723).

Copyright

© 2022, Rao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,329
    views
  • 220
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lu Rao
  2. Peijun Li
  3. Xinglei Liu
  4. Qi Wang
  5. Alexander I Son
  6. Arne Gennerich
  7. Judy Shih-Hwa Liu
  8. Xiaoqin Fu
(2022)
Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking
eLife 11:e82218.
https://doi.org/10.7554/eLife.82218

Share this article

https://doi.org/10.7554/eLife.82218

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Cell Biology
    Hongqian Chen, Hui-Qing Fang ... Peng Liu
    Tools and Resources

    The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.