Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences
Abstract
The evolution from outcrossing to selfing is a transition that occurred recurrently throughout the eukaryote tree of life, in plants, animals, fungi and algae. Despite some short-term advantages, selfing is supposed to be an evolutionary dead-end reproductive strategy on the long-term and its tippy distribution on phylogenies suggests that most selfing species are of recent origin. However, dating such transitions is challenging while it is central for this hypothesis. We build on previous theories to explicit the differential effect of past changes in selfing rate or in population size on the probability of recombination events along the genome. This allows us to develop two methods making use of full genome polymorphism data to 1) test if a transition from outcrossing to selfing occurred, and 2) infer its age. The sequentially Markov coalescent based (teSMC) and the Approximate Bayesian Computation (tsABC) methods use a common framework based on a transition matrix summarizing the distribution of times to the most recent common ancestor along the genome, allowing to estimate changes in the ratio of population recombination and mutation rates in time. We first demonstrate that our methods can disentangle between past change in selfing rate from past changes in demographic history. Second, we assess the accuracy of our methods and show that transitions to selfing as old as approximatively 2.5Ne generations can be identified from polymorphism data. Third, our estimates are robust to the presence of linked negative selection on coding sequences. Finally, as a proof of principle, we apply both methods to three populations from Arabidopsis thaliana, recovering a transition to selfing which occurred approximately 600,000 years ago. Our methods pave the way to study recent transitions to predominant self-fertilization in selfing organisms and to better account for variation in mating systems in demographic inferences.
Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is available at the following repositories.tsABC: https://github.com/sstruett/tsABCteSMC: https://github.com/TPPSellinger/eSMC2scripts used for the analyses in Strütt and Sellinger et al: https://github.com/laurentlab-mpipz/struett_and_sellinger_et_al
-
1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana1001genomes, DOI: 10.1016/j.cell.2016.05.063.
Article and author information
Author details
Funding
Max Planck Institute for Plant Breeding Research (open access funding)
- Stefan Strütt
- Stefan Laurent
No external funding was received for this work.
Copyright
© 2023, Strütt et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,552
- views
-
- 177
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.
-
- Evolutionary Biology
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.