Glutamine synthetase mRNA releases sRNA from its 3´UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and E coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3´UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3´UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Data availability
The RNA-seq data have been deposited in DDBJ DRA under accession number DRA012682.
-
Regulatory network analysis of mRNA 3'UTRs in SalmonellaDDBJ Sequence Read Archive, DRA012682.
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (JP19H03464)
- Masatoshi Miyakoshi
Japan Society for the Promotion of Science (JP19KK0406)
- Masatoshi Miyakoshi
Japan Society for the Promotion of Science (JP21K19063)
- Masatoshi Miyakoshi
Japan Society for the Promotion of Science (JP22H02236)
- Kan Tanaka
Japan Society for the Promotion of Science (JP16H06279)
- Hiroki Takahashi
- Tetsuya Hayashi
Waksman Foundation of Japan
- Masatoshi Miyakoshi
Takeda Medical Research Foundation
- Masatoshi Miyakoshi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Miyakoshi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,602
- views
-
- 232
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ’s positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.
-
- Microbiology and Infectious Disease
Influenza A virus transcribes viral mRNAs from the eight segmented viral genome when it infects. The kinetics of viral transcription, nuclear export of viral transcripts, and their potential variation between the eight segments are poorly characterised. Here, we introduce a statistical framework for estimating the nuclear export rate of each segment from a snapshot of in situ mRNA localisation. This exploits the cell-to-cell variation at a single time point observed by an imaging-based in situ transcriptome assay. Using our model, we revealed the variation in the mRNA nuclear export rate of the eight viral segments. Notably, the two influenza viral antigens hemagglutinin and neuraminidase were the slowest segments in the nuclear export, suggesting the possibility that influenza A virus uses the nuclear retention of viral transcripts to delay the expression of antigenic molecules. Our framework presented in this study can be widely used for investigating the nuclear retention of nascent transcripts produced in a transcription burst.