Ribosomal RNA (rRNA) sequences from 33 globally distributed mosquito species for improved metagenomics and species identification

  1. Cassandra Koh  Is a corresponding author
  2. Lionel Frangeul
  3. Hervé Blanc
  4. Carine Ngoagouni
  5. Sébastien Boyer
  6. Philippe Dussart
  7. Nina Grau
  8. Romain Girod
  9. Jean-Bernard Duchemin
  10. Maria-Carla Saleh  Is a corresponding author
  1. Institut Pasteur, France
  2. Institut Pasteur de Bangui, Central African Republic
  3. Institut Pasteur du Cambodge, Cambodia
  4. Institut Pasteur de Madagascar, Madagascar
  5. Institut Pasteur de la Guyane, French Guiana

Abstract

Total RNA sequencing (RNA-seq) is an important tool in the study of mosquitoes and the RNA viruses they vector as it allows assessment of both host and viral RNA in specimens. However, there are two main constraints. First, as with many other species, abundant mosquito ribosomal RNA (rRNA) serves as the predominant template from which sequences are generated, meaning that the desired host and viral templates are sequenced far less. Second, mosquito specimens captured in the field must be correctly identified, in some cases to the sub-species level. Here, we generate mosquito ribosomal RNA (rRNA) datasets which will substantially mitigate both of these problems. We describe a strategy to assemble novel rRNA sequences from mosquito specimens and produce an unprecedented dataset of 234 full-length 28S and 18S rRNA sequences of 33 medically important species from countries with known histories of mosquito-borne virus circulation (Cambodia, the Central African Republic, Madagascar, and French Guiana). These sequences will allow both physical and computational removal of rRNA from specimens during RNAseq protocols. We also assess the utility of rRNA sequences for molecular taxonomy and compare phylogenies constructed using rRNA sequences versus those created using the gold standard for molecular species identification of specimens-the mitochondrial cytochrome c oxidase I (COI) gene. We find that rRNA- and COI-derived phylogenetic trees are incongruent and that 28S and concatenated 28S+18S rRNA phylogenies reflect evolutionary relationships that are more aligned with contemporary mosquito systematics. This significant expansion to the current rRNA reference library for mosquitoes will improve mosquito RNA-seq metagenomics by permitting the optimization of species-specific rRNA depletion protocols for a broader range of species and streamlining species identification by rRNA sequence and phylogenetics.

Data availability

Multiple sequence alignment files are included as source data files. All sequences generated in this study have been deposited in GenBank under the accession numbers OM350214-OM350327 for 18S rRNA sequences, OM542339-OM542460 for 28S rRNA sequences, and OM630610-OM630715 for COI sequences.

Article and author information

Author details

  1. Cassandra Koh

    Viruses and RNA Interference Unit, Institut Pasteur, Paris, France
    For correspondence
    cassandra.koh@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2466-6731
  2. Lionel Frangeul

    Viruses and RNA Interference Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Hervé Blanc

    Viruses and RNA Interference Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Carine Ngoagouni

    Medical Entomology Laboratory, Institut Pasteur de Bangui, Bangui, Central African Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Sébastien Boyer

    Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
    Competing interests
    The authors declare that no competing interests exist.
  6. Philippe Dussart

    Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1931-3037
  7. Nina Grau

    Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
    Competing interests
    The authors declare that no competing interests exist.
  8. Romain Girod

    Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Bernard Duchemin

    Vectopôle Amazonien Emile Abonnenc, Institut Pasteur de la Guyane, Cayenne, French Guiana
    Competing interests
    The authors declare that no competing interests exist.
  10. Maria-Carla Saleh

    Viruses and RNA Interference Unit, Institut Pasteur, Paris, France
    For correspondence
    carla.saleh@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8593-4117

Funding

Defense Advanced Research Projects Agency (Cooperative Agreement HR001118S0017)

  • Maria-Carla Saleh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Koh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,471
    views
  • 208
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cassandra Koh
  2. Lionel Frangeul
  3. Hervé Blanc
  4. Carine Ngoagouni
  5. Sébastien Boyer
  6. Philippe Dussart
  7. Nina Grau
  8. Romain Girod
  9. Jean-Bernard Duchemin
  10. Maria-Carla Saleh
(2023)
Ribosomal RNA (rRNA) sequences from 33 globally distributed mosquito species for improved metagenomics and species identification
eLife 12:e82762.
https://doi.org/10.7554/eLife.82762

Share this article

https://doi.org/10.7554/eLife.82762

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.