Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function

  1. Jeffrey Molendijk
  2. Ronnie Blazev
  3. Richard J Mills
  4. Yaan-Kit Ng
  5. Kevin I Watt
  6. Daryn Chau
  7. Paul Gregorevic
  8. Peter J Crouch
  9. James BW Hilton
  10. Leszek Lisowski
  11. Peixiang Zhang
  12. Karen Reue
  13. Aldons J Lusis
  14. James Hudson
  15. David E James
  16. Marcus M Seldin
  17. Benjamin L Parker  Is a corresponding author
  1. University of Melbourne, Australia
  2. QIMR Berghofer Medical Research Institute, Australia
  3. University of California, Irvine, United States
  4. University of Sydney, Australia
  5. University of California, Los Angeles, United States

Abstract

Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.

Data availability

The proteomics data generated in this study are deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) under the identifiers PXD032729, PXD034913 and PXD035170. The code used for downstream analysis of proteomic data can be found at: https://github.com/JeffreyMolendijk/skeletal_muscle.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jeffrey Molendijk

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6575-504X
  2. Ronnie Blazev

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  3. Richard J Mills

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    No competing interests declared.
  4. Yaan-Kit Ng

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  5. Kevin I Watt

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  6. Daryn Chau

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  7. Paul Gregorevic

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  8. Peter J Crouch

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7777-4747
  9. James BW Hilton

    Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
    Competing interests
    No competing interests declared.
  10. Leszek Lisowski

    Children's Medical Research Institute, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  11. Peixiang Zhang

    Department of Human Genetics/Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Karen Reue

    Department of Human Genetics/Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  13. Aldons J Lusis

    Department of Human Genetics/Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. James Hudson

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    No competing interests declared.
  15. David E James

    School of Life and Environmental Science, University of Sydney, Sydney, Australia
    Competing interests
    David E James, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5946-5257
  16. Marcus M Seldin

    Department of Biological Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8026-4759
  17. Benjamin L Parker

    Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
    For correspondence
    ben.parker@unimelb.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1818-2183

Funding

National Health and Medical Research Council (APP1184363)

  • Karen Reue
  • Marcus M Seldin
  • Benjamin L Parker

National Institute of Health (HL147883)

  • Aldons J Lusis

National Institute of Health (DK117850)

  • Aldons J Lusis

Weary Dunlop Foundation (NA)

  • Benjamin L Parker

The ALS Association (21-DDC-574)

  • Paul Gregorevic
  • Peter J Crouch

National Health and Medical Research Council (APP2009642)

  • Benjamin L Parker

National Health and Medical Research Council (APP2013189)

  • Richard J Mills

National Health and Medical Research Council (APP1156562)

  • Paul Gregorevic
  • Benjamin L Parker

National Institute of Health (HL138193)

  • Marcus M Seldin

National Institute of Health (DK130640)

  • Marcus M Seldin

National Institute of Health (DK097771)

  • Marcus M Seldin

National Institute of Health (GM115318)

  • Karen Reue

National Institute of Health (AG070959)

  • Aldons J Lusis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All rAAV6 intramuscular injection mouse experiments were approved by The University of Melbourne Animal Ethics Committee (AEC ID1914940) and conformed to the National Health and Medical Research Council of Australia guidelines regarding the care and use of experimental animals. All studies involving the use of SOD1G37R mice and non-transgenic littermates were approved by a University of Melbourne Animal Experimentation Ethics Committee (approval #2015124) and conformed with guidelines of the Australian National Health and Medical Research Council.

Copyright

© 2022, Molendijk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,732
    views
  • 245
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey Molendijk
  2. Ronnie Blazev
  3. Richard J Mills
  4. Yaan-Kit Ng
  5. Kevin I Watt
  6. Daryn Chau
  7. Paul Gregorevic
  8. Peter J Crouch
  9. James BW Hilton
  10. Leszek Lisowski
  11. Peixiang Zhang
  12. Karen Reue
  13. Aldons J Lusis
  14. James Hudson
  15. David E James
  16. Marcus M Seldin
  17. Benjamin L Parker
(2022)
Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
eLife 11:e82951.
https://doi.org/10.7554/eLife.82951

Share this article

https://doi.org/10.7554/eLife.82951

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.