A low-cost, open-source evolutionary bioreactor and its educational use

  1. Vishhvaan Gopalakrishnan
  2. Dena Crozier
  3. Kyle J Card
  4. Lacy D Chick
  5. Nikhil P Krishnan
  6. Erin McClure
  7. Julia Pelesko
  8. Drew FK Williamson
  9. Daniel Nichol
  10. Soumyajit Mandal
  11. Robert A. Bonomo
  12. Jacob G Scott  Is a corresponding author
  1. Cleveland Clinic, United States
  2. Hawken School, United States
  3. Case Western Reserve University, United States
  4. Massachusetts General Hospital, United States
  5. Institute of Cancer Research, United Kingdom
  6. Louis Stokes Cleveland VA Medical Center, United States

Abstract

A morbidostat is a bioreactor that uses antibiotics to control the growth of bacteria, making it well-suited for studying the evolution of antibiotic resistance. However, morbidostats are often too expensive to be used in educational settings. Here we present a low-cost morbidostat called the EVolutionary biorEactor (EVE) that can be built by students with minimal engineering and programming experience. We describe how we validated EVE in a real classroom setting by evolving replicate Escherichia coli populations under chloramphenicol challenge, thereby enabling students to learn about bacterial growth and antibiotic resistance.

Data availability

We provide the materials to build an EVE on our Github: https://github.com/vishhvaan/eve-pi. We have also included the data to generate figure 2 on the Github.

Article and author information

Author details

  1. Vishhvaan Gopalakrishnan

    Lerner College of Medicine, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0532-7710
  2. Dena Crozier

    Lerner College of Medicine, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1841-0011
  3. Kyle J Card

    Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0462-2777
  4. Lacy D Chick

    Hawken School, Gates Mills, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3059-4300
  5. Nikhil P Krishnan

    Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Erin McClure

    Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6604-1273
  7. Julia Pelesko

    Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Drew FK Williamson

    Department of Pathology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1745-8846
  9. Daniel Nichol

    Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2662-1836
  10. Soumyajit Mandal

    Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert A. Bonomo

    Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jacob G Scott

    Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland Clinic, Cleveland, United States
    For correspondence
    scottj10@ccf.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2971-7673

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,606
    views
  • 203
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vishhvaan Gopalakrishnan
  2. Dena Crozier
  3. Kyle J Card
  4. Lacy D Chick
  5. Nikhil P Krishnan
  6. Erin McClure
  7. Julia Pelesko
  8. Drew FK Williamson
  9. Daniel Nichol
  10. Soumyajit Mandal
  11. Robert A. Bonomo
  12. Jacob G Scott
(2022)
A low-cost, open-source evolutionary bioreactor and its educational use
eLife 11:e83067.
https://doi.org/10.7554/eLife.83067

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.