The SPARC complex defines RNAPII promoters in Trypanosoma brucei

  1. Desislava P Staneva
  2. Stefan Bresson
  3. Tatsiana Auchynnikava
  4. Christos Spanos
  5. Juri Rappsilber
  6. A Arockia Jeyaprakash
  7. David Tollervey
  8. Keith R Matthews  Is a corresponding author
  9. Robin C Allshire  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. The Francis Crick Institute, United Kingdom
  3. Technische Universität, Germany

Abstract

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.

Data availability

The sequencing data generated in this study can be accessed on the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE208037.The proteomics data generated in this study can be accessed on the Proteomics Identification Database (PRIDE; https://www.ebi.ac.uk/pride/) with accession number PXD036454.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Desislava P Staneva

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Bresson

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Tatsiana Auchynnikava

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Christos Spanos

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4376-8242
  5. Juri Rappsilber

    Institute of Biotechnology, Technische Universität, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. A Arockia Jeyaprakash

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David Tollervey

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2894-2772
  8. Keith R Matthews

    Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    keith.matthews@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0309-9184
  9. Robin C Allshire

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    robin.allshire@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8005-3625

Funding

Medical Research Council (MR/T04702X/1)

  • Desislava P Staneva
  • Keith R Matthews
  • Robin C Allshire

Wellcome Trust (22171)

  • Keith R Matthews

Wellcome Trust (200885)

  • Desislava P Staneva
  • Tatsiana Auchynnikava
  • Robin C Allshire

Wellcome Trust (224358)

  • Desislava P Staneva
  • Tatsiana Auchynnikava
  • Robin C Allshire

Wellcome Trust (222516)

  • Stefan Bresson
  • David Tollervey

Wellcome Trust (202811)

  • A Arockia Jeyaprakash

Wellcome Trust (108504)

  • Juri Rappsilber

Wellcome Trust (203149)

  • Christos Spanos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Staneva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,057
    views
  • 240
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Desislava P Staneva
  2. Stefan Bresson
  3. Tatsiana Auchynnikava
  4. Christos Spanos
  5. Juri Rappsilber
  6. A Arockia Jeyaprakash
  7. David Tollervey
  8. Keith R Matthews
  9. Robin C Allshire
(2022)
The SPARC complex defines RNAPII promoters in Trypanosoma brucei
eLife 11:e83135.
https://doi.org/10.7554/eLife.83135

Share this article

https://doi.org/10.7554/eLife.83135

Further reading

    1. Chromosomes and Gene Expression
    Felix Y Zhou, David P Waterman ... James E Haber
    Research Article

    Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12–15 hr, after which cells ‘adapt’ to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and maintain the arrest. Dun1 is required for the establishment, but not the maintenance, of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with two persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hr these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2’s binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest require overlapping but different sets of factors.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Marius Regin, Yingnan Lei ... Claudia Spits
    Research Article

    About 70% of human cleavage stage embryos show chromosomal mosaicism, falling to 20% in blastocysts. Chromosomally mosaic human blastocysts can implant and lead to healthy new-borns with normal karyotypes. Studies in mouse embryos and human gastruloids showed that aneuploid cells are eliminated from the epiblast by p53-mediated apoptosis while being tolerated in the trophectoderm. These observations suggest a selective loss of aneuploid cells from human embryos, but the underlying mechanisms are not yet fully understood. Here, we investigated the cellular consequences of aneuploidy in a total of 125 human blastocysts. RNA-sequencing of trophectoderm cells showed activated p53 pathway and apoptosis proportionate to the level of chromosomal imbalance. Immunostaining corroborated that aneuploidy triggers proteotoxic stress, autophagy, p53-signaling, and apoptosis independent from DNA damage. Total cell numbers were lower in aneuploid embryos, due to a decline both in trophectoderm and in epiblast/primitive endoderm cell numbers. While lower cell numbers in trophectoderm may be attributed to apoptosis, aneuploidy impaired the second lineage segregation, particularly primitive endoderm formation. This might be reinforced by retention of NANOG. Our findings might explain why fully aneuploid embryos fail to further develop and we hypothesize that the same mechanisms lead to the removal of aneuploid cells from mosaic embryos.