Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity
Abstract
Individual differences in striatal dopamine synthesis capacity have been associated with working memory capacity, trait impulsivity and spontaneous eye-blink rate (sEBR), as measured with readily available and easily administered, 'off-the-shelf' tests. Such findings have raised the suggestion that individual variation in dopamine synthesis capacity, estimated with expensive and invasive brain positron emission tomography (PET) scans, can be approximated with simple, more pragmatic tests. However, direct evidence for the relationship between these simple trait measures and striatal dopamine synthesis capacity has been limited and inconclusive. We measured striatal dopamine synthesis capacity using [18F]-FDOPA PET in a large sample of healthy volunteers (N=94) and assessed the correlation with simple, short tests of working memory capacity, trait impulsivity, and sEBR. We additionally explored the relationship with an index of subjective reward sensitivity. None of these trait measures correlated significantly with striatal dopamine synthesis capacity, nor did they have out-of-sample predictive power. Bayes Factor analyses indicated the evidence was in favour of absence of correlations for all but subjective reward sensitivity. These results warrant caution for using these off-the-shelf trait measures as proxies of striatal dopamine synthesis capacity.
Data availability
The minimally processed data used in this study and the overarching project it is part of are available from the Donders Institute Data Repository (https://doi.org/10.34973/wn51-ej53; custom data use agreement RU-DI-HD-1.0). The final data derivatives relevant to the current work, as well as all code for data analysis and figures creation, are available from a separate collection on the Donders Institute Data Repository (https://doi.org/10.34973/0sce-z290).
-
Effects of sulpiride and methylphenidate on brain and cognition: a PET pharmaco-fMRI studyDonders Institute Data Repository (di.dccn.DSC_3017048.01_875).
Article and author information
Author details
Funding
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (453-14-015)
- Roshan Cools
Horizon 2020 Framework Programme (945539)
- Roshan Cools
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants provided written informed consent. The study was approved by the local ethics committee ("Commissie Mensgebonden Onderzoek", CMO region Arnhem-Nijmegen, The Netherlands: protocol NL57538.091.16).
Copyright
© 2023, van den Bosch et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,199
- views
-
- 124
- downloads
-
- 12
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.
-
- Neuroscience
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.