Inferential eye movement control while following dynamic gaze

  1. Nicole Xiao Han  Is a corresponding author
  2. Miguel Patricio Eckstein
  1. University of California, Santa Barbara, United States

Abstract

Attending to other people's gaze is evolutionary important to make inferences about intentions and actions. Gaze influences covert attention and triggers eye movements. However, we know little about how the brain controls the fine-grain dynamics of eye movements during gaze following. Observers followed people's gaze shifts in videos during search and we related the observer eye movement dynamics to the time course of gazer head movements extracted by a deep neural network. We show that the observers' brains use information in the visual periphery to execute predictive saccades that anticipate the information in the gazer's head direction by 190-350 ms. The brain simultaneously monitors moment-to-moment changes in the gazer's head velocity to dynamically alter eye movements and re-fixate the gazer (reverse saccades) when the head accelerates before the initiation of the first forward gaze-following saccade. Using saccade-contingent manipulations of the videos, we experimentally show that the reverse saccades are planned concurrently with the first forward gaze-following saccade and have a functional role in reducing subsequent errors fixating on the gaze goal. Together, our findings characterize the inferential and functional nature of social attention's fine-grain eye movement dynamics.

Data availability

All data generated or analyzed during this study are deposited at https://osf.io/g9bzt/

The following data sets were generated

Article and author information

Author details

  1. Nicole Xiao Han

    Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barabra, United States
    For correspondence
    xhan01@ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2860-2743
  2. Miguel Patricio Eckstein

    Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barabra, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Army Research Office (W911NF-19-D-0001)

  • Miguel Patricio Eckstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experiment protocol was approved by the University of California Internal Review Board with protocol number 12-22-0667. All participants signed consent forms to participate in the experiment and to include their images in resulting publications.

Copyright

© 2023, Han & Eckstein

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 560
    views
  • 81
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole Xiao Han
  2. Miguel Patricio Eckstein
(2023)
Inferential eye movement control while following dynamic gaze
eLife 12:e83187.
https://doi.org/10.7554/eLife.83187

Share this article

https://doi.org/10.7554/eLife.83187

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.