Abstract

Background: There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain.

Methods: In a multicentre open label, randomized, controlled adaptive platform trial, adult patients with early symptomatic COVID-19 were randomized to one of six treatment arms including high dose oral ivermectin (600µg/kg daily for seven days), the monoclonal antibodies casirivimab and imdevimab (600mg/600mg), and no study drug. The primary outcome was the comparison of viral clearance rates in the modified intention-to-treat population (mITT). This was derived from daily log10 viral densities in standardized duplicate oropharyngeal swab eluates. This ongoing trial is registered at ClinicalTrials.gov (NCT05041907).

Results: Randomization to the ivermectin arm was stopped after enrolling 205 patients into all arms, as the prespecified futility threshold was reached. Following ivermectin the mean estimated rate of SARS-CoV-2 viral clearance was 9.1% slower [95%CI -27.2% to +11.8%; n=45] than in the no drug arm [n=41], whereas in a preliminary analysis of the casirivimab/imdevimab arm it was 52.3% faster [95%CI +7.0% to +115.1%; n=10 (Delta variant) versus n=41].

Conclusions: High dose ivermectin did not have measurable antiviral activity in early symptomatic COVID-19. Pharmacometric evaluation of viral clearance rate from frequent serial oropharyngeal qPCR viral density estimates is a highly efficient and well tolerated method of assessing SARS CoV-2 antiviral therapeutics in vivo.

Funding: 'Finding treatments for COVID-19: A phase 2 multi-centre adaptive platform trial to assess antiviral pharmacodynamics in early symptomatic COVID-19 (PLAT-COV)' is supported by the Wellcome Trust Grant ref: 223195/Z/21/Z through the COVID-19 Therapeutics Accelerator.

Clinical trial number: ClinicalTrials.gov (NCT05041907).

Data availability

All code and data are openly accessible via GitHub: https://github.com/jwatowatson/PLATCOV-IvermectinSequencing data have been deposited in GISAID.

The following data sets were generated
    1. Watson
    2. J
    (2022) PLATCOV Ivermectin
    https://github.com/jwatowatson/PLATCOV-Ivermectin.

Article and author information

Author details

  1. William HK Schilling

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    For correspondence
    william@tropmedres.ac
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6328-8748
  2. Podjanee Jittamala

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  3. James A Watson

    Nuffield Department of Medicine, Oxford University Clinical Research Unit, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5524-0325
  4. Maneerat Ekkapongpisit

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  5. Tanaya Siripoon

    Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  6. Thundon Ngamprasertchai

    Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  7. Viravarn Luvira

    Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9270-3720
  8. Sasithorn Pongwilai

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  9. Cintia Valeria Cruz

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8393-8536
  10. James J Callery

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3218-2166
  11. Simon Boyd

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  12. Varaporn Kruabkontho

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  13. Thatsanun Ngernseng

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  14. Jaruwan Tubprasert

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  15. Mohammad Yazid Abdad

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  16. Nattaporn Piaraksa

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  17. Kanokon Suwannasin

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  18. Pongtorn Hanboonkunupakarn

    Bangplee Hospital, Ministry of Public Health, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  19. Borimas Hanboonkunupakarn

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  20. Sakol Sookprome

    Bangplee Hospital, Ministry of Public Health, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  21. Kittiyod Poovorawan

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  22. Janjira Thaipadungpanit

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6184-3381
  23. Stuart Blacksell

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  24. Mallika Imwong

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  25. Joel Tarning

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4566-4030
  26. Walter RJ Taylor

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  27. Vasin Chotivanich

    Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  28. Chunlanee Sangketchon

    Faculty of Science and Health Technology, Navamindradhiraj University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  29. Wiroj Ruksakul

    Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  30. Kesinee Chotivanich

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  31. Mauro Martins Teixeira

    Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    Mauro Martins Teixeira, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6944-3008
  32. Sasithon Pukrittayakamee

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  33. Arjen M Dondorp

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5190-2395
  34. Nicholas PJ Day

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2309-1171
  35. Watcharapong Piyaphanee

    Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  36. Weerapong Phumratanaprapin

    Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  37. Nicholas J White

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    For correspondence
    nickw@tropmedres.ac
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1897-1978

Funding

Wellcome Trust (223195/Z/21/Z)

  • Nicholas J White

Wellcome Trust (223195/Z/21/Z)

  • William HK Schilling

Wellcome Trust (223195/Z/21/Z)

  • William HK Schilling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The trial was approved by local and national research ethics boards in Thailand (Faculty of Tropical Medicine Ethics Committee, Mahidol University, FTMEC Ref: TMEC 21-058) and the Central Research Ethics Committee (CREC, Bangkok, Thailand, CREC Ref: CREC048/64BP-MED34) and by the Oxford University Tropical Research Ethics Committee (OxTREC, Oxford, UK, OxTREC Ref: 24-21). All patients provided fully informed written consent.

Copyright

© 2023, Schilling et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,108
    views
  • 262
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William HK Schilling
  2. Podjanee Jittamala
  3. James A Watson
  4. Maneerat Ekkapongpisit
  5. Tanaya Siripoon
  6. Thundon Ngamprasertchai
  7. Viravarn Luvira
  8. Sasithorn Pongwilai
  9. Cintia Valeria Cruz
  10. James J Callery
  11. Simon Boyd
  12. Varaporn Kruabkontho
  13. Thatsanun Ngernseng
  14. Jaruwan Tubprasert
  15. Mohammad Yazid Abdad
  16. Nattaporn Piaraksa
  17. Kanokon Suwannasin
  18. Pongtorn Hanboonkunupakarn
  19. Borimas Hanboonkunupakarn
  20. Sakol Sookprome
  21. Kittiyod Poovorawan
  22. Janjira Thaipadungpanit
  23. Stuart Blacksell
  24. Mallika Imwong
  25. Joel Tarning
  26. Walter RJ Taylor
  27. Vasin Chotivanich
  28. Chunlanee Sangketchon
  29. Wiroj Ruksakul
  30. Kesinee Chotivanich
  31. Mauro Martins Teixeira
  32. Sasithon Pukrittayakamee
  33. Arjen M Dondorp
  34. Nicholas PJ Day
  35. Watcharapong Piyaphanee
  36. Weerapong Phumratanaprapin
  37. Nicholas J White
  38. on behalf of the PLATCOV Collaborative Group
(2023)
Pharmacometrics of high dose ivermectin in early COVID-19: an open label, randomized, controlled adaptive platform trial (PLATCOV)
eLife 12:e83201.
https://doi.org/10.7554/eLife.83201

Share this article

https://doi.org/10.7554/eLife.83201

Further reading

    1. Medicine
    2. Neuroscience
    Gansheng Tan, Anna L Huguenard ... Eric C Leuthardt
    Research Article

    Background:

    Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function.

    Methods:

    In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement.

    Results:

    We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen’s d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge.

    Conclusions:

    Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

    Funding:

    The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB).

    Clinical trial number:

    NCT04557618.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.