Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin-beta receptor signaling.

  1. Xing Feng
  2. Ruifeng Sun
  3. Moonyoung Lee
  4. Xinyue Chen
  5. Shangqin Guo
  6. Huimin Geng
  7. Marcus Müschen
  8. Jungmin Choi  Is a corresponding author
  9. Joao Pedro Pereira  Is a corresponding author
  1. Yale University, United States
  2. Korea University, Republic of Korea
  3. University of California, San Francisco, United States

Abstract

Acute lymphoblastic and myeloblastic leukemias (ALL and AML) have been known to modify the bone marrow microenvironment and disrupt non-malignant hematopoiesis. However, the molecular mechanisms driving these alterations remain poorly defined. Using mouse models of ALL and AML, here we show that leukemic cells turn-off lymphopoiesis and erythropoiesis shortly after colonizing the bone marrow. ALL and AML cells express lymphotoxin-a1b2 and activate LTbR signaling in mesenchymal stem cells (MSCs), which turns off IL7 production and prevents non-malignant lymphopoiesis. We show that the DNA damage response pathway and CXCR4 signaling promote lymphotoxin-a1b2 expression in leukemic cells. Genetic or pharmacologic disruption of LTbR signaling in MSCs restores lymphopoiesis but not erythropoiesis, reduces leukemic cell growth, and significantly extends the survival of transplant recipients. Similarly, CXCR4 blocking also prevents leukemia-induced IL7 downregulation, and inhibits leukemia growth. These studies demonstrate that acute leukemias exploit physiological mechanisms governing hematopoietic output as a strategy for gaining competitive advantage.

Data availability

Accession number to RNA expression data were deposited in NCBI (GSE221243)

The following data sets were generated

Article and author information

Author details

  1. Xing Feng

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Ruifeng Sun

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Moonyoung Lee

    Department of Biomedical Sciences, Korea University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Xinyue Chen

    Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8288-7685
  5. Shangqin Guo

    Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1157-0423
  6. Huimin Geng

    Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Marcus Müschen

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Jungmin Choi

    Department of Biomedical Sciences, Korea University, Seoul, Republic of Korea
    For correspondence
    jungminchoi@korea.ac.kr
    Competing interests
    Jungmin Choi, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8614-0973
  9. Joao Pedro Pereira

    Department of Immunobiology, Yale University, New Haven, United States
    For correspondence
    joao.pereira@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5694-4938

Funding

NIH Office of the Director (R01AI113040)

  • Joao Pedro Pereira

NIH Office of the Director (R21AI133060)

  • Joao Pedro Pereira

NIH Office of the Director (R35CA197628)

  • Marcus Müschen

NIH Office of the Director (R01AI164692)

  • Marcus Müschen

NIH Office of the Director (R21AI146648)

  • Marcus Müschen

NIH Office of the Director (T32 DK007356)

  • Xing Feng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained under specific pathogen-free conditions at the Yale Animal Resources Center and were used according to the protocol approved by the Yale University Institutional Animal Care and Use Committee. (2022-11377).

Copyright

© 2023, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xing Feng
  2. Ruifeng Sun
  3. Moonyoung Lee
  4. Xinyue Chen
  5. Shangqin Guo
  6. Huimin Geng
  7. Marcus Müschen
  8. Jungmin Choi
  9. Joao Pedro Pereira
(2023)
Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin-beta receptor signaling.
eLife 12:e83533.
https://doi.org/10.7554/eLife.83533

Share this article

https://doi.org/10.7554/eLife.83533

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.