Global analysis of contact-dependent human-to-mouse intercellular mRNA and lncRNA transfer in cell culture

  1. Sandipan Dasgupta
  2. Daniella Y Dayagi
  3. Gal Haimovich  Is a corresponding author
  4. Emanuel Wyler
  5. Tsviya Olender
  6. Robert H Singer
  7. Markus Landthaler
  8. Jeffrey E Gerst  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Max Delbruck Center for Molecular Medicine, Switzerland
  3. Albert Einstein College of Medicine, United States

Abstract

Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an in vitro human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically, <1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions.

Data availability

The processed RNA sequencing files have been deposited in the Gene Expression Omnibus (GEO) Database under the accession number GSE185002

The following data sets were generated

Article and author information

Author details

  1. Sandipan Dasgupta

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Daniella Y Dayagi

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2310-2416
  3. Gal Haimovich

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    gal.haimovich@weizmann.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3360-5108
  4. Emanuel Wyler

    Berlin Institute of Medical Systems Biology and Systems Biology, Max Delbruck Center for Molecular Medicine, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9884-1806
  5. Tsviya Olender

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  6. Robert H Singer

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    Robert H Singer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6725-0093
  7. Markus Landthaler

    Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  8. Jeffrey E Gerst

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    jeffrey.gerst@weizmann.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8411-6881

Funding

German-Israeli Foundation for Scientific Research and Development (I-1461-412.13/2018)

  • Markus Landthaler
  • Jeffrey E Gerst

US-Israel Binational Science Foundation-National Science Foundation (2015846)

  • Robert H Singer
  • Jeffrey E Gerst

Joel and Mady Dukler Fund for Cancer Research

  • Jeffrey E Gerst

Jean-Jacques Brunschwig Fund for the Molecular Genetics of Cancer

  • Jeffrey E Gerst

Moross Integrated Cancer Center

  • Jeffrey E Gerst

Kekst Family Institute for Medical Genetics

  • Jeffrey E Gerst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Dasgupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,506
    views
  • 222
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandipan Dasgupta
  2. Daniella Y Dayagi
  3. Gal Haimovich
  4. Emanuel Wyler
  5. Tsviya Olender
  6. Robert H Singer
  7. Markus Landthaler
  8. Jeffrey E Gerst
(2023)
Global analysis of contact-dependent human-to-mouse intercellular mRNA and lncRNA transfer in cell culture
eLife 12:e83584.
https://doi.org/10.7554/eLife.83584

Share this article

https://doi.org/10.7554/eLife.83584

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.