The ‘ForensOMICS’ approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics

  1. Andrea Bonicelli  Is a corresponding author
  2. Hayley L Mickleburgh
  3. Alberto Chighine
  4. Emanuela Locci
  5. Daniel J Wescott
  6. Noemi Procopio  Is a corresponding author
  1. The Forensic Science Unit, Faculty of Health and Life Sciences, Northumbria University, United Kingdom
  2. Amsterdam Centre for Ancient Studies and Archaeology (ACASA) – Department of Archaeology, Faculty of Humanities, University of Amsterdam, Netherlands
  3. Forensic Anthropology Center, Texas State University, United States
  4. Department of Medical Science and Public Health, Section of Legal Medicine, University of Cagliari, Italy
4 figures, 1 table and 4 additional files

Figures

Figure 1 with 5 supplements
Results for the tuned model.

(A) Arrow plot showing multiblock contexts for the overall model. (B) Optimal number of components to explain model variable calculated via cross-validation (error bars provide standard deviation). (C) Loading plot showing how each variable contributes to the covariance of each group. (D) The clustered image map (CIM) shows the selected compounds in the final model. It is possible to see that most compounds decrease in intensity after decomposition except for few metabolites and two lipids that specifically increase in certain postmortem interval (PMI) intervals.

Figure 1—figure supplement 1
Results for the metabolomics data.

(A) Clustered image map (CIM), (B) sample plot, (C) and boxplot for the metabolomics data.

Figure 1—figure supplement 2
Results for the lipidomics data.

(A) Clustered image map (CIM) and (B) sample plot for the lipidomics data.

Figure 1—figure supplement 3
Results for the proteomics data.

(A) Clustered image map (CIM), (B) sample plot, (C) and boxplot for the proteomics data.

Figure 1—figure supplement 4
Balanced error variations across variable selection steps.
Figure 1—figure supplement 5
Score plots for partial least square discriminant analysis (PLS-DA) results of all the omics blocks considered.
DIABLO selected variables correlated with PMI.

(A) Boxplots of the selected variables after tuning that shows variation with postmortem interval (PMI). Variables are expressed in standardized values. (B) Correlation between different omics blocks highlighting the correlations between different compounds obtained with the three omics selected in the final discriminant analysis model.

Metabolite set enrichment analysis based on differentially expressed metabolites identified in bone.
Figure 4 with 1 supplement
Positioning of the bodies in the single graves (left) pre-decomposition and (right) after complete skeletonization.
Figure 4—figure supplement 1
Flowchart of the experimental design of the study.

Tables

Table 1
Sample composition, demographics, deposition context, and postmortem interval (PMI).

The sample ID column reports the biological replicates used. Additional information on the body donors and observations made during collection of bone samples (e.g., medical treatments, bone colour, and density) can be found in the supplementary information in Mickleburgh et al., 2021.

Sample IDSexAge (years)PMIDeposition context
Pre-deposition samples
D1_TF_AFemale9110 daysOpen pit
D1_TF_BFemale9110 daysOpen pit
D1_TF_CFemale9110 daysOpen pit
D2_TF_AFemale672 daysBurial
D2_TF_BFemale672 daysBurial
D2_TF_CFemale672 daysBurial
D3_TF_AFemale613 daysBurial
D3_TF_BFemale613 daysBurial
D3_TF_CFemale613 daysBurial
D4_TF_AFemale7710 daysOpen pit
D4_TF_BFemale7710 daysOpen pit
D4_TF_CFemale7710 daysOpen pit
Post-deposition samples
D1_TS_AFemale91219 daysOpen pit
D1_TS_BFemale91219 daysOpen pit
D1_TS_CFemale91219 daysOpen pit
D2_TS_AFemale67834 daysBurial
D2_TS_BFemale67834 daysBurial
D2_TS_CFemale67834 daysBurial
D3_TS_AFemale61790 daysBurial
D3_TS_BFemale61790 daysBurial
D3_TS_CFemale61790 daysBurial
D4_TS_AFemale77872 daysOpen pit
D4_TS_BFemale77872 daysOpen pit
D4_TS_CFemale77872 daysOpen pit

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Bonicelli
  2. Hayley L Mickleburgh
  3. Alberto Chighine
  4. Emanuela Locci
  5. Daniel J Wescott
  6. Noemi Procopio
(2022)
The ‘ForensOMICS’ approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics
eLife 11:e83658.
https://doi.org/10.7554/eLife.83658