Comprehensive re-analysis of hairpin small RNAs in fungi reveals loci with conserved links
Abstract
RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA-like features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/miRNA-like characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1,727 reported mi/milRNA-like loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.
Data availability
Sequencing data used in this work is available in public repositories, with publication details provided in Table S1 and all data accessions provided in Table S3. Results of abundance profiling are found in File S1 and summarized in Table S4.
-
Small RNA-seq from multiple Cuscuta species parasitizing ArabidopsisNCBI BioProjects, PRJNA543296.
-
Penicillium marneffei Small RNA Transcriptome (17-30nt)NCBI BioProjects, PRJNA207279.
-
small RNA and degradome sequencing in Fusarium oxysporumNCBI BioProjects, PRJNA232807.
-
Fusarium graminearum strain:HN9-1 Transcriptome or Gene expressionNCBI BioProjects, PRJNA253151.
-
Small RNA sequencing of Penicillium chrysogenum P2niaD18NCBI BioProjects, PRJNA270038.
-
Taiwanofungus camphoratus Transcriptome or Gene expressionNCBI BioProjects, PRJNA268267.
-
Zymoseptoria tritici small RNA transcriptomeNCBI BioProjects, PRJNA271281.
-
Exploring pathogenic microRNAs of rice sheath blight pathogenNCBI BioProjects, PRJNA282111.
-
Puccinia striiformis f. sp. tritici strain:CYR32 Raw sequence readsNCBI BioProjects, PRJNA355964.
-
Small RNA sequencing of Coprinopsis cinereaNCBI BioProjects, PRJNA477255.
-
Integrated microRNA and mRNA analysis in T. rubrumNCBI BioProjects, PRJNA483837.
-
small RNAs sequencing of the Botryosphaeia dothidea strainsNCBI BioProjects, PRJNA511629.
-
Sexual development of Cordyceps militarisNCBI BioProjects, PRJNA496418.
-
Triticum aestivum cultivar:HD2329 (bread wheat)NCBI BioProjects, PRJNA266709.
-
Volvariella volvacea Raw sequence readsNCBI BioProjects, PRJNA594834.
-
Interactions between maize and its BLSB pathogenNCBI BioProjects, PRJNA596921.
-
Pisolithus microcarpus SI14 smRNA sequencing Redo - SI14_1wk_ECM3JGI GOLD (published), Gp0317539.
-
Pisolithus microcarpus SI9 smRNA sequencing Redo - SI9_1wk_ECM1JGI GOLD (published), Gp0317541.
-
Pisolithus microcarpus R4 smRNA - R4_FLM3_RedoJGI GOLD (published), Gp0251344.
-
Pisolithus microcarpus R10 smRNA - R10_FLM3_RedoJGI GOLD (published), Gp0251333.
-
Constructed small RNA libraries from N. bombycisNCBI BioProjects, PRJNA760284.
-
small RNA sequences of Fusarium oxysporum f. sp. cubense TR4NCBI BioProjects, PRJNA562097.
Article and author information
Author details
Funding
Fondo Nacional de Desarrollo Científico y Tecnológico (11220727)
- Nathan R Johnson
Instituto Milenio de Biologia Integrativa (ICN17_022)
- Nathan R Johnson
- Luis F Larrondo
- Elena A Vidal
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Johnson et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,242
- views
-
- 159
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.
-
- Genetics and Genomics
Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.